Skip to main content
Log in

Dantzig–Wolfe reformulations for binary quadratic problems

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig–Wolfe and Quadratic Convex optimization principles. We show that a few reformulations of our family yield continuous relaxations that are strong in terms of dual bounds and computationally efficient to optimize. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We report and analyze in depth a particular reformulation providing continuous relaxations whose solutions turn out to be integer optima in all our tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The full set of instances used in the paper is made available as Ceselli, A., Létocart, L., Traversi, E. “Binary quadratic problem decomposition methods—kQKP dataset”, UNIMI Dataverse (2021), URL https://urldefense.proofpoint.com/v2/url?u=https-3A_doi.org_10.13130_RD-5FUNIMI_3QA23K&d=DwIDaQ&is included as reference [13] in the paper.

References

  1. Adams, W., Forrester, R., Glover, F.: Comparisons and enhancement strategies for linearizing mixed 0–1 quadratic programs. Discret. Optim. 1(2), 99–120 (2004). https://doi.org/10.1016/j.disopt.2004.03.006

    Article  MathSciNet  MATH  Google Scholar 

  2. Aganagic, M., Mokhtari, S.: Security constrained economic dispatch using nonlinear Dantzig–Wolfe decomposition. IEEE Trans. Power Syst. 12(1), 105–112 (1997)

    Article  Google Scholar 

  3. Ahlatçioglu, A., Bussieck, M., Esen, M., Guignard, M., Jagla, J.H., Meeraus, A.: Combining QCR and CHR for convex quadratic pure 0–1 programming problems with linear constraints. Ann. OR 199(1), 33–49 (2012)

    Article  MathSciNet  Google Scholar 

  4. Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1130–1154 (1980)

    Article  MathSciNet  Google Scholar 

  5. Basso, S., Ceselli, A., Tettamanzi, A.: Random sampling and machine learning to understand good decompositions. Ann. Oper. Res. 284(2), 501–526 (2020). https://doi.org/10.1007/s10479-018-3067-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M., Malaguti, E., Traversi, E.: Automatic Dantzig–Wolfe reformulation of mixed integer programs. Math. Program. 149(1–2), 391–424 (2015)

    Article  MathSciNet  Google Scholar 

  7. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Program. 131(1–2), 381–401 (2012)

    Article  MathSciNet  Google Scholar 

  8. Billionnet, A., Elloumi, S., Plateau, M.C.: Improving the performance of standard solvers via a tighter convex reformulation of constrained quadratic 0–1 programs: the QCR method. Discret. Appl. Math. 157, 1185–1197 (2009)

    Article  Google Scholar 

  9. Billionnet, A., Soutif, E.: An exact method based on Lagrangean decomposition for the 0–1 quadratic knapsak problem. Eur. J. Oper. Res. 157, 565–575 (2004)

    Article  Google Scholar 

  10. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141(1–2), 435–452 (2013). https://doi.org/10.1007/s10107-012-0534-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11(2), 125–137 (1999)

    Article  MathSciNet  Google Scholar 

  12. Ceselli, A., Létocart, L., Traversi, E.: Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case. Tech. Rep. 5923, 1–32 (2017)

    Google Scholar 

  13. Ceselli, A., Létocart, L., Traversi, E.: Binary quadratic problem decomposition methods—kQKP dataset—UNIMI dataverse (2021). https://doi.org/10.13130/RD_UNIMI/3QA23K

  14. Dantzig, G., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960)

    Article  Google Scholar 

  15. Desaulniers, G., Desrosiers, J., Solomon, M.: Column Generation, vol. 5. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  16. Fayard, D., Plateau, G.: Algorithm 47: an algorithm for the solution of the 0–1 knapsack problem. Computing 28, 269–287 (1982)

    Article  Google Scholar 

  17. Faye, A., Roupin, F.: Partial Lagrangian relaxation for general quadratic programming. 4OR 5(1), 75–88 (2007)

    Article  MathSciNet  Google Scholar 

  18. Fortet, R.: Applications de lalgèbre de boole en recherche opérationnelle. Revue Française de Recherche Opérationnelle 4, 17–26 (1960)

    MATH  Google Scholar 

  19. Gamrath, G., Lübbecke, M.: Experiments with a generic Dantzig–Wolfe decomposition for integer programs. In: Festa, P. (ed.) Experimental Algorithms, pp. 239–252. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975)

    Article  MathSciNet  Google Scholar 

  21. Gueye, S., Michelon, P.: Miniaturized linearizations for quadratic 0/1 problems. Ann. Oper. Res. 140(1), 235–261 (2005). https://doi.org/10.1007/s10479-005-3973-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Gurobi Optimization: Gurobi (2018). http://www.gurobi.com/. Version 8.0, http://www.gurobi.com/

  23. Holmberg, K.: MINLP: generalized cross decomposition. In: Encyclopedia of Optimization, pp. 2148–2155. Springer (2009)

  24. IBM: Cplex (2018). Version 12.8.0. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

  25. Jünger, M., Liebling, T., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958–2008. Springer, Berlin (2009)

    Google Scholar 

  26. Krislock, N., Malick, J., Roupin, F.: Biqcrunch: a semidefinite branch-and-bound method for solving binary quadratic problems. ACM Trans. Math. Softw. 43(4), 32:1-32:23 (2017). https://doi.org/10.1145/3005345

    Article  MathSciNet  MATH  Google Scholar 

  27. Lawphongpanich, S.: Simplicial with truncated Dantzig–Wolfe decomposition for nonlinear multicommodity network flow problems with side constraints. Oper. Res. Lett. 26(1), 33–41 (2000)

    Article  MathSciNet  Google Scholar 

  28. Lemaréchal, C., Oustry, F.: Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. Ph.D. thesis, INRIA (1999)

  29. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Math. Program. 90(3), 399–427 (2001)

    Article  MathSciNet  Google Scholar 

  30. Létocart, L., Plateau, M.C., Plateau, G.: An efficient hybrid heuristic method for the 0–1 exact \(k\)-item quadratic knapsack problem. Pesquisa Operacional 34(1), 49–72 (2014)

    Article  Google Scholar 

  31. Létocart, L., Wiegele, A.: Exact solution methods for the k-item quadratic knapsack problem. In: Lecture Notes in Computer Science, Combinatorial Optimization, vol. 9849, pp. 166–176. Springer (2016)

  32. Liberti, L.: Compact linearization for binary quadratic problems. 4OR 5(3), 231–245 (2007). https://doi.org/10.1007/s10288-006-0015-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Misener, R., Floudas, C.: GloMIQO: global mixed-integer quadratic optimizer. J. Global Optim. 57, 3–50 (2013)

    Article  MathSciNet  Google Scholar 

  34. Pisinger, D.: The quadratic knapsack problem: a survey. Discret. Appl. Math. 155, 623–648 (2007)

    Article  MathSciNet  Google Scholar 

  35. Pisinger, D., Rasmussen, A.B., Sandvik, R.: Solution of large quadratic knapsack problems through aggressive reduction. INFORMS J. Comput. 19(2), 280–290 (2007)

    Article  MathSciNet  Google Scholar 

  36. Plateau, M.C.: Quadratic convex reformulations for quadratic 0–1 programming. 4OR 6, 187–190 (2008)

    Article  Google Scholar 

  37. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2), 307 (2010)

    Article  MathSciNet  Google Scholar 

  38. SCIP: Scip (2018). http://scip.zib.de/. Version 6.0.0, http://scip.zib.de/

  39. Sherali, H., Adams, W.: A tight linearization and an algorithm for 0–1 quadratic programming problems. Manag. Sci. 32(10), 1274–1290 (1986)

    Article  MathSciNet  Google Scholar 

  40. Vanderbeck, F., Savelsbergh, M.: A generic view of Dantzig–Wolfe decomposition in mixed integer programming. Oper. Res. Lett. 34(3), 296–306 (2006)

    Article  MathSciNet  Google Scholar 

  41. Wolfe, P.: A duality theorem for non-linear programming. Quart. Appl. Math. 19(3), 239–244 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the associate editor and three anonymous reviewers, whose insightful comments and careful proof-checks helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ceselli.

Ethics declarations

Funding

The work has been partially funded by Regione Lombardia - Fondazione Cariplo, grant no. 2015–0717, project “REDNEAT”, and partially undertook when A. Ceselli was visiting LIPN - Université Sorbonne Paris Nord.

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and materials

All data analyzed during this study are publicly available. URLs are included in this published article.

Code availability

The full code was made available for review. We remark that a set of packages were used in this study, that were either open source or available for academic use. Specific references are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Details on the QCR method

1.1 A.1 Semidefinite model providing \(\delta ^*\) and \(\rho ^*\)

Let us consider (\(\hbox {BQ}_{\delta ,\rho }\)) (the convexified formulation of a Binary Quadratic Problem, introduced in Sect. 4):

$$\begin{aligned} (\text {BQ}_{\delta ,\rho })~~\min ~ f_{\delta ,\rho }(x)=&\, x^\top Q x + L^\top x + \sum _{j \in J} \delta _j (x_j^2 - x_j) \\&+ \rho (A_{=} x - b_{=})^2 \nonumber \\ \text {s.t.}~~~&G x \le g \\&H x \le h \\&x \in \{0,1\}^n\;. \end{aligned}$$

The SDP used to obtain the optimal parameters \(\delta ^*,\rho ^*\) (see [8, 36]) is the following:

$$\begin{aligned} \text {(SDP}_{\text {BQ}_{\delta ,\rho }}\text {)}~~\text{ max }~~&\sum _{i=1}^{n}\sum _{j=1}^{n} Q_{ij}X_{ij}&\\ \text{ s.t. }~~&X_{ii} = x_i ~~~ i=1,\dots ,n&[\delta _i] \\&\langle A_= A_=^\top , X \rangle -2b_=^\top A_= x = -b_=^2&[\rho ]\\&G x \le g&\\&H x \le h&\\&\left( \begin{array}{cc} 1&{}x^t\\ x&{}X \end{array} \right) \succeq 0&\\&x \in \mathbb R^n, ~ X \in \mathbb R^{n \times n} \;.&\end{aligned}$$

Namely, the optimal values \(\delta ^*\) and \(\rho ^*\) of problem (\(\hbox {BQ}_{\delta ,\rho }\)) are simply given by the optimal values of the dual variables of (\(\text {SDP}_{\text {BQ}_{\delta ,\rho }}\)).

1.2 A.2 Semidefinite model providing \(\delta ^*\), \(\rho ^*\) and \(\varGamma ^*\)

Let us consider (\(\hbox {BQ}_{\delta ,\rho ,\varGamma }\)):

$$\begin{aligned} (\text {BQ}_{\delta ,\rho ,\varGamma })~~\min ~ f_{\delta , \rho , \varGamma }(x,z)=&x^\top Q x + L^\top x + \sum _{j \in J} \delta _j (x_j^2 - x_j) + \rho (A_{=} x - b_{=})^2 + \\&+ \sum _{i \in J} \sum _{j \in J} \varGamma _{ij} (z_{ij} - x_i x_j) \\ \text {s.t.}~~~&G x \le g \\&H x \le h \\&z_{ij} \le x_i,\ z_{ij} \le x_j ~~~~~~~~~~~ i, j = 1, \ldots , n\\&z_{ij} \ge 0, \ z_{ij} \ge x_i + x_j - 1 ~~ i, j = 1, \ldots , n\\&x \in \{0,1\}^n\;. \end{aligned}$$

The SDP used to obtain the optimal parameters \(\delta ^*,\rho ^*,\varGamma ^*\) (see [7]) is the following:

$$\begin{aligned} \text {(SDP}_{\text {BQ}_{\delta ,\rho ,\varGamma }}\text {)}~~\text{ max }~~&\sum _{i=1}^{n}\sum _{j=1}^{n} Q_{ij}X_{ij}&\\ \text{ s.t. }~~&X_{ii} = x_i ~~~ i=1,\dots ,n&[\delta _i] \\&\langle A_= A_=^\top , X \rangle -2b_=^\top A_= x = -b_=^2&[\rho ]\\&G x \le g&\\&H x \le h&\\&X_{ij} \le x_i,\ X_{ij} \le x_j ~~~~~~~~~~~~ i,j=1, \ldots ,n&[\varGamma ^+_{ij}]\\&X_{ij} \ge x_i + x_j - 1,\ X_{ij} \ge 0 ~~~ i,j=1, \ldots ,n&[\varGamma ^-_{ij}]\\&\left( \begin{array}{cc} 1&{}x^t\\ x&{}X \end{array} \right) \succeq 0&\\&x \in \mathbb R^n, ~ X \in \mathbb R^{n \times n} \;.&\end{aligned}$$

Namely, the optimal values \(\delta ^*\), \(\rho ^*\) and \(\varGamma ^*\) of problem (\(\hbox {BQ}_{\delta ,\rho ,\varGamma }\)) are simply given by the optimal values of the dual variables of (\(\text {SDP}_{\text {BQ}_{\delta ,\rho ,\varGamma }}\)), with \({\varGamma }^* = {\varGamma ^{+}}^* + {\varGamma ^{-}}^*\).

B Dual of a nonlinear model reformulated with DWR

Let us consider the following formulation

$$\begin{aligned} \text {({F-NLM})}~~\min ~~&f(x) \\ \text {s.t.}~~&g_i(x) \le 0&i \in I&~[\mu _i]~~ \\ ~~&x- \sum _{p \in P} x_p y^p = 0&~[\pi ]\\ ~~&\sum _{p \in P} y^p - 1 = 0&~[\pi _0]\\ ~~&y^p \ge 0&\forall p \in \mathcal {P}&~[\nu _p] \end{aligned}$$

(we recall that the constraints \(x \in [0,1]^n\) are included in the constraints \(g_i(x) \le 0\)).

The formulation of its Wolfe dual is

$$\begin{aligned} \max ~~&L(x, y, \mu , \pi , \pi _0, \nu )\\ s.t.~~&\nabla _x L(x, y, \mu , \pi , \pi _0, \nu ) =0\\&\nabla _yL(x, y, \mu , \pi , \pi _0, \nu ) =0\\&y^p \ge 0&\forall p \in \mathcal {P}\\&\mu _i \ge 0&i \in I\\&\nu _p \le 0&\forall p \in \mathcal {P} \end{aligned}$$

with

$$\begin{aligned}&L(x, y, \mu , \pi , \pi _0, \nu ) = f(x) + \sum _{i \in I} \mu _i g_i(x) + \pi ^\top \left( x- \sum _{p \in \mathcal {P}} x_p y_p\right) \\&+ \pi _0 \left( \sum _{p \in \mathcal {P}} y_p - 1\right) + \sum _{p \in \mathcal {P}} \nu _p y_p \end{aligned}$$

which leads to

$$\begin{aligned} \max ~~&L(x, y, \mu , \pi , \pi _0, \nu )&\\ \text {s.t.}~~&\nabla _x f(x) + \sum _{i \in I} \mu _i \nabla _x g_i(x) + \pi = 0&\\&- \pi ^\top x_p + \pi _0 +\nu _p =0&\forall p \in \mathcal {P}\\&y^p \ge 0&\forall p \in \mathcal {P}\\&\mu _i \ge 0&i \in I\\&\nu _p \le 0&\forall p \in \mathcal {P} \end{aligned}$$

If we substituting the definition of \(\nu _p= \pi ^\top x_p - \pi _0 \) in \(L(x, y, \mu , \pi , \pi _0, \nu )\) we have:

$$\begin{aligned}&L(x, y, \mu , \pi , \pi _0, \nu ) = f(x) + \sum _{i \in I} \mu _i g_i(x) + \pi ^\top \left( x- \sum _{p \in \mathcal {P}} x_p y_p\right) \\&\qquad + \pi _0 \left( \sum _{p \in \mathcal {P}} y_p - 1\right) + \sum _{p \in \mathcal {P}} \nu _p y_p\\&\quad = f(x) + \sum _{i \in I} \mu _i g_i(x) + \pi ^\top \left( x- \sum _{p \in \mathcal {P}} x_p y_p\right) + \pi _0 \left( \sum _{p \in \mathcal {P}} y_p - 1\right) \\&\qquad + \sum _{p \in \mathcal {P}} (\pi ^\top x_p - \pi _0) y_p\\&\quad = f(x) + \sum _{i \in I} \mu _i g_i(x) + \pi ^\top \left( x- \sum _{p \in \mathcal {P}} x_p y_p\right) - \pi _0 + \sum _{p \in \mathcal {P}} \left( \pi ^\top x_p \right) y_p\\&\quad = f(x) + \sum _{i \in I} \mu _i g_i(x) + \pi ^\top x - \pi _0 \end{aligned}$$

leading to the following dual:

$$\begin{aligned} \max ~~&f(x) + \sum _{i \in I} \mu _i g_i(x) + \pi ^\top x - \pi _0 \\ \text {s.t.}~~&\nabla _x f(x) + \sum _{i \in I} \mu _i \nabla _x g_i(x) + \pi = 0\\&- \pi ^\top x_p + \pi _0 \ge 0&\forall p \in \mathcal {P}\\&y^p \ge 0&\forall p \in \mathcal {P}\\&\mu _i \ge 0&i \in I\;. \end{aligned}$$

C Reinterpretation of the new reformulations for (BQP) with Lagrangian duality

Let us consider the following reformulation of (BQP):

$$\begin{aligned} (\text {Q}')~~\min ~~&w^\top S w + L^\top w&\\ \text {s.t.}~~~&x_i - w_i = 0&i= 1, \ldots , n&~~~[\phi _i]\\ ~~~&G w \le g&~~~[\mu ]\\&H x \le h&~~~[\psi ]\\&x^2_i - x_i = 0&i = 1, \ldots , n&~~~[\delta _i]\\&(A_= x -\delta b)^2 = 0&~~~[\rho ]\\&z_{ij} \le x_i,\ z_{ij} \le x_j&i, j = 1, \ldots , n&~~~[\varXi _{ij}]\\&z_{ij} \ge 0, \ z_{ij} \ge x_i + x_j - 1&i, j = 1, \ldots , n&~~~[\varUpsilon _{ij}]\\&z_{ij} - x_i x_j = 0&i, j = 1, \ldots , n&~~~[\varGamma _{ij}] \end{aligned}$$

where for each constraint we indicate in squared brakets the corresponding Lagrangian multiplier.

Sections 3 and 4 show that the continuous relaxations of the reformulations showed in Table 1 can be viewed as a specific Lagrangian Dual of (\(\hbox {Q}'\)) where some of the constraints are relaxed in the Lagrangian Function, some are kept in the Lagrangian subproblem and other are dropped. For simplicitly, each constraint is represented by its Lagrangian multiplier. For example, (\(\hbox {Q}_{\delta ,\rho }\)-QM) is obtained by relaxing constraints \([\phi ]\),\([\mu ]\),\([\delta ]\),\([\rho ]\), keeping constraints \([\psi ]\),\([\delta ]\) and dropping constraints \([\varXi ]\),\([\varUpsilon ]\),\([\varGamma ]\):

$$\begin{aligned} \text {(Q}_{\delta ,\rho }\text {-QM)}~~~\max _{\phi ,\mu ,\delta ,\rho } \theta (\phi ,\mu ,\delta ,\rho ) = \max _{\phi ,\mu ,\delta ,\rho } \underset{\begin{array}{c} x,w \in \mathbb {R}^n:~ H x \le h \\ x^2_i - x_i = 0,~ i = 1, \ldots , n \end{array}}{\min } L(x,w,\phi ,\mu ,\delta ,\rho ) \end{aligned}$$

with \(L(x,w,\phi ,\mu ,\delta ,\rho ) = w^\top Q w + L^\top w + \phi ^\top (x- w) + \mu ^\top (G w - g) + \delta ^\top (x^2 - x) + \rho (A_= x -b_=)^2\).

D Comparing (K\(_{\delta ^*,\rho ^*}\)-QP-kn) with CPLEX

In Table 5 we compare the time needed for computing the root node of (K\(_{\delta ^*,\rho ^*}\)-QP-kn) (that in each test corresponds to the time needed to solve the problem to global integer optimality) with the overall time needed by CPLEX to solve the original formulation with general purpose techniques (BK) and (\(\hbox {BK}_{\delta ^*,\rho ^*}\)). For (BK) the number of instances yielding timeout is also reported: the average computing time does not include them.

Table 5 DD instances, DWR versus CPLEX

The results of Table 5 provide the following observation:

Experimental Observation 13

With (K\(_{\delta ^*,\rho ^*}\)-QP-kn) we are able to close the whole integrality gap faster than the time needed by CPLEX to solve to optimality the same instance. The time needed by (K\(_{\delta ^*,\rho ^*}\)-QP-kn) is similar to that of (\(\hbox {BK}_{\delta ^*,\rho ^*}\)), that is CPLEX after applying an ad-hoc convexification of the objective function.

We remark that none of these techniques uses problem specific algorithms. In this regard, (K\(_{\delta ^*,\rho ^*}\)-QP-kn) has some additional potential, as the column generation scheme can strongly benefit from the use of ad-hoc pricing algorithms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceselli, A., Létocart, L. & Traversi, E. Dantzig–Wolfe reformulations for binary quadratic problems. Math. Prog. Comp. 14, 85–120 (2022). https://doi.org/10.1007/s12532-021-00206-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-021-00206-w

Keywords

Mathematics Subject Classification

Navigation