Amar, Y., Schweidtmann, A.M., Deutsch, P., Cao, L., Lapkin, A.: Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis. Chem. Sci. 10(27), 6697–6706 (2019). https://doi.org/10.1039/C9SC01844A
Article
Google Scholar
Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995). https://doi.org/10.1007/BF01099647
MathSciNet
Article
MATH
Google Scholar
Bendtsen, C., Stauning, O.: Fadbad++ (version 2.1): a flexible C++ package for automatic differentiation (2012)
Bongartz, D.: Deterministic global flowsheet optimization for the design of energy conversion processes. Ph.D. Thesis, RWTH Aachen University (2020). https://doi.org/10.18154/RWTH-2020-06052
Bongartz, D., Mitsos, A.: Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations. J. Glob. Optim. 20(9), 419 (2017). https://doi.org/10.1007/s10898-017-0547-4
MathSciNet
Article
MATH
Google Scholar
Bongartz, D., Mitsos, A.: Deterministic global flowsheet optimization: between equation-oriented and sequential-modular methods. AIChE J. 65(3), 1022–1034 (2019). https://doi.org/10.1002/aic.16507
Article
Google Scholar
Bongartz, D., Najman, J., Sass, S., Mitsos, A.: MAiNGO: McCormick-based Algorithm for mixed integer Nonlinear Global Optimization. Technical report, Process Systems Engineering (AVT.SVT), RWTH Aachen University (2018). http://permalink.avt.rwth-aachen.de/?id=729717
Bonilla, E.V., Chai, K.M., Williams, C.: Multi-task Gaussian process prediction. In: Advances in neural information processing systems, pp. 153–160 (2008)
Boukouvala, F., Floudas, C.A.: Argonaut: algorithms for global optimization of constrained grey-box computational problems. Optim. Lett. 11(5), 895–913 (2017). https://doi.org/10.1007/s11590-016-1028-2
MathSciNet
Article
MATH
Google Scholar
Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2016). https://doi.org/10.1016/j.ejor.2015.12.018
MathSciNet
Article
MATH
Google Scholar
Bradford, E., Imsland, L., Zhang, D., Chanona, E.A.d.R.: Stochastic data-driven model predictive control using Gaussian processes. arXiv:1908.01786 (2019)
Bradford, E., Schweidtmann, A.M., Lapkin, A.: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm. J. Glob. Optim. 71(2), 407–438 (2018). https://doi.org/10.1007/s10898-018-0609-2
MathSciNet
Article
MATH
Google Scholar
Bradford, E., Schweidtmann, A.M., Zhang, D., Jing, K., del Rio-Chanona, E.A.: Dynamic modeling and optimization of sustainable algal production with uncertainty using multivariate Gaussian processes. Comput. Chem. Eng. 118, 143–158 (2018). https://doi.org/10.1016/j.compchemeng.2018.07.015
Article
Google Scholar
Caballero, J.A., Grossmann, I.E.: An algorithm for the use of surrogate models in modular flowsheet optimization. AIChE J. 54(10), 2633–2650 (2008). https://doi.org/10.1002/aic.11579
Article
Google Scholar
Caballero, J.A., Grossmann, I.E.: Rigorous flowsheet optimization using process simulators and surrogate models. In: Computer Aided Chemical Engineering, vol. 25, pp. 551–556. Elsevier (2008)
Chachuat, B., Houska, B., Paulen, R., Peric, N., Rajyaguru, J., Villanueva, M.E.: Set-theoretic approaches in analysis, estimation and control of nonlinear systems. IFAC-PapersOnLine 48(8), 981–995 (2015). https://doi.org/10.1016/j.ifacol.2015.09.097
Article
Google Scholar
Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 24, pp. 2249–2257. Curran Associates, Inc. (2011). http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf
Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959). https://doi.org/10.1287/mnsc.6.1.73
MathSciNet
Article
MATH
Google Scholar
CLP, C.O.: Linear programming solver: an open source code for solving linear programming problems (2011). https://doi.org/10.5281/zenodo.3748677
Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based optimization. AIChE J. 60(6), 2211–2227 (2014). https://doi.org/10.1002/aic.14418
Article
Google Scholar
Damianou, A., Lawrence, N.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215 (2013)
Davis, E., Ierapetritou, M.: A Kriging method for the solution of nonlinear programs with black-box functions. AIChE J. 53(8), 2001–2012 (2007). https://doi.org/10.1002/aic.11228
Article
Google Scholar
Davis, E., Ierapetritou, M.: A kriging-based approach to MINLP containing black-box models and noise. Ind. Eng. Chem. Res. 47(16), 6101–6125 (2008). https://doi.org/10.1021/ie800028a
Article
Google Scholar
Davis, E., Ierapetritou, M.: A centroid-based sampling strategy for Kriging global modeling and optimization. AIChE J. 56(1), 220–240 (2010). https://doi.org/10.1002/aic.11881
Article
Google Scholar
Del Rio-Chanona, E.A., Cong, X., Bradford, E., Zhang, D., Jing, K.: Review of advanced physical and data-driven models for dynamic bioprocess simulation: case study of algae-bacteria consortium wastewater treatment. Biotechnol. Bioeng. 116(2), 342–353 (2019). https://doi.org/10.1002/bit.26881
Article
Google Scholar
Djelassi, H., Mitsos, A.: libALE—a library for algebraic logical expression trees (2019). https://git.rwth-aachen.de/avt.svt/public/libale. Accessed 8 Nov 2019
Eason, J.P., Biegler, L.T.: A trust region filter method for glass box/black box optimization. AIChE J. 62(9), 3124–3136 (2016). https://doi.org/10.1002/aic.15325
Article
Google Scholar
Epperly, T.G.W., Pistikopoulos, E.N.: A reduced space branch and bound algorithm for global optimization. J. Glob. Optim. 11(3), 287–311 (1997). https://doi.org/10.1023/A:1008212418949
MathSciNet
Article
MATH
Google Scholar
Freier, L., Hemmerich, J., Schöler, K., Wiechert, W., Oldiges, M., von Lieres, E.: Framework for Kriging-based iterative experimental analysis and design: optimization of secretory protein production in corynebacterium glutamicum. Eng. Life Sci. 16(6), 538–549 (2016). https://doi.org/10.1002/elsc.201500171
Article
Google Scholar
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005). https://doi.org/10.1137/S0036144504446096
MathSciNet
Article
MATH
Google Scholar
Glassey, J., Von Stosch, M.: Hybrid Modeling in Process Industries. CRC Press (2018)
Gleixner, A.M., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound tightening. J. Glob. Optim. 67(4), 731–757 (2017). https://doi.org/10.1007/s10898-016-0450-4
MathSciNet
Article
MATH
Google Scholar
Hasan, M.F., Baliban, R.C., Elia, J.A., Floudas, C.A.: Modeling, simulation, and optimization of postcombustion CO\(_2\) capture for variable feed concentration and flow rate. 2. pressure swing adsorption and vacuum swing adsorption processes. Ind. Eng. Chem. Res. 51(48), 15665–15682 (2012). https://doi.org/10.1021/ie301572n
Helmdach, D., Yaseneva, P., Heer, P.K., Schweidtmann, A.M., Lapkin, A.A.: A multiobjective optimization including results of life cycle assessment in developing biorenewables-based processes. ChemSusChem 10(18), 3632–3643 (2017). https://doi.org/10.1002/cssc.201700927
Article
Google Scholar
Hofschuster, W., Krämer, W.: FILIB++ interval library (version 3.0.2) (1998)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3 edn. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-03199-5
Hüllen, G., Zhai, J., Kim, S.H., Sinha, A., Realff, M.J., Boukouvala, F.: managing uncertainty in data-driven simulation-based optimization. Comput. Chem. Eng. (2019). https://doi.org/10.1016/j.compchemeng.2019.106519
International Business Machies: IBM ilog CPLEX (version 12.1) (2009)
Johnson, S.G.: The NLopt nonlinear-optimization package (version 2.4.2) (2016)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998). https://doi.org/10.1023/A:1008306431147
MathSciNet
Article
MATH
Google Scholar
Kahrs, O., Marquardt, W.: The validity domain of hybrid models and its application in process optimization. Chem. Eng. Process. Process Intensif. 46(11), 1054–1066 (2007). https://doi.org/10.1016/j.cep.2007.02.031
Article
Google Scholar
Keßler, T., Kunde, C., McBride, K., Mertens, N., Michaels, D., Sundmacher, K., Kienle, A.: Global optimization of distillation columns using explicit and implicit surrogate models. Chem. Eng. Sci. 197, 235–245 (2019). https://doi.org/10.1016/j.ces.2018.12.002
Article
Google Scholar
Keßler, T., Kunde, C., Mertens, N., Michaels, D., Kienle, A.: Global optimization of distillation columns using surrogate models. SN Appl. Sci. 1(1), 11 (2019). https://doi.org/10.1007/s42452-018-0008-9
Article
Google Scholar
Kim, J., Choi, S.: On local optimizers of acquisition functions in Bayesian optimization. arXiv:1901.08350 (2019)
Kraft, D.: Algorithm 733: TOMP-fortran modules for optimal control calculations. ACM Trans. Math. Softw. (TOMS) 20(3), 262–281 (1994). https://doi.org/10.1145/192115.192124
Article
MATH
Google Scholar
Krige, D.G.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. South. Afr. Inst. Min. Metall. 52(6), 119–139 (1951)
Google Scholar
Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational approach. In: A. Abraham, A. Hassanien, P. Siarry, A. Engelbrecht (eds.) Foundations of Computational Intelligence Volume 3. Studies in Computational Intelligence, vol. 203, pp. 153–234. Springer, Berlin (2009)
Lin, Z., Wang, J., Nikolakis, V., Ierapetritou, M.: Process flowsheet optimization of chemicals production from biomass derived glucose solutions. Comput. Chem. Eng. 102, 258–267 (2017). https://doi.org/10.1016/j.compchemeng.2016.09.012
Article
Google Scholar
Locatelli, M., Schoen, F. (eds.): Global Optimization: Theory, Algorithms, and Applications. MOS-SIAM Series on Optimization. Mathematical Programming Society, Philadelphia (2013)
Google Scholar
Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L., Hendel, G., Koch, T., Lübbecke, M.E., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite (version 4.0)
McBride, K., Kaiser, N.M., Sundmacher, K.: Integrated reaction-extraction process for the hydroformylation of long-chain alkenes with a homogeneous catalyst. Comput. Chem. Eng. 105, 212–223 (2017). https://doi.org/10.1016/j.compchemeng.2016.11.019
Article
Google Scholar
McBride, K., Sundmacher, K.: Overview of surrogate modeling in chemical process engineering. Chem. Ingenieur Tech. 91(3), 228–239 (2019). https://doi.org/10.1002/cite.201800091
Article
Google Scholar
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/BF01580665
Article
MATH
Google Scholar
Mehrian, M., Guyot, Y., Papantoniou, I., Olofsson, S., Sonnaert, M., Misener, R., Geris, L.: Maximizing neotissue growth kinetics in a perfusion bioreactor: an in silico strategy using model reduction and Bayesian optimization. Biotechnol. Bioeng. 115(3), 617–629 (2018). https://doi.org/10.1002/bit.26500
Article
Google Scholar
Menne, D., Kamp, J., Wong, J.E., Wessling, M.: Precise tuning of salt retention of backwashable polyelectrolyte multilayer hollow fiber nanofiltration membranes. J. Membr. Sci. 499, 396–405 (2016). https://doi.org/10.1016/j.memsci.2015.10.058
Article
Google Scholar
Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005). https://doi.org/10.1007/s10107-005-0580-9
MathSciNet
Article
MATH
Google Scholar
Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2), 503–526 (2014). https://doi.org/10.1007/s10898-014-0166-2
MathSciNet
Article
MATH
Google Scholar
Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009). https://doi.org/10.1137/080717341
MathSciNet
Article
MATH
Google Scholar
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)
Mogk, G., Mrziglod, T., Schuppert, A.: Application of hybrid models in chemical industry. In: Computer Aided Chemical Engineering, vol. 10, pp. 931–936. Elsevier (2002). https://doi.org/10.1016/S1570-7946(02)80183-3
Najman, J., Bongartz, D., Mitsos, A.: Convex relaxations of componentwise convex functions. Comput. Chem. Eng. 130, 106527 (2019). https://doi.org/10.1016/j.compchemeng.2019.106527
Article
Google Scholar
Najman, J., Mitsos, A.: On tightness and anchoring of McCormick and other relaxations. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0598-6
Quirante, N., Javaloyes, J., Caballero, J.A.: Rigorous design of distillation columns using surrogate models based on Kriging interpolation. AIChE J. 61(7), 2169–2187 (2015). https://doi.org/10.1002/aic.14798
Article
Google Scholar
Quirante, N., Javaloyes, J., Ruiz-Femenia, R., Caballero, J.A.: Optimization of chemical processes using surrogate models based on a Kriging interpolation. In: Computer Aided Chemical Engineering, vol. 37, pp. 179–184. Elsevier (2015). https://doi.org/10.1016/B978-0-444-63578-5.50025-6
Rall, D., Menne, D., Schweidtmann, A.M., Kamp, J., von Kolzenberg, L., Mitsos, A., Wessling, M.: Rational design of ion separation membranes. J. Membr. Sci. 569, 209–219 (2019). https://doi.org/10.1016/j.memsci.2018.10.013
Article
Google Scholar
Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced lectures on machine learning, pp. 63–71. Springer (2004)
Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)
Article
Google Scholar
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. (1989). https://doi.org/10.1214/ss/1177012413
Schweidtmann, A.M., Clayton, A.D., Holmes, N., Bradford, E., Bourne, R.A., Lapkin, A.A.: Machine learning meets continuous flow chemistry: Automated optimization towards the pareto front of multiple objectives. Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.07.031
Schweidtmann, A.M., Mitsos, A.: Deterministic global optimization with artificial neural networks embedded. J. Optim. Theory Appl. 180(3), 925–948 (2019). https://doi.org/10.1007/s10957-018-1396-0
MathSciNet
Article
MATH
Google Scholar
Schweidtmann, A.M., Netze, L., Mitsos, A.: Melon: Machine learning models for optimization. https://git.rwth-aachen.de/avt.svt/public/MeLOn/ (2020)
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218
Article
Google Scholar
Smith, E.M., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997). https://doi.org/10.1016/S0098-1354(97)87599-0
Article
Google Scholar
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv preprint arXiv:0912.3995 (2009)
Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. 30(3), 424–460 (2015). https://doi.org/10.1080/10556788.2014.924514
MathSciNet
Article
MATH
Google Scholar
Sundararajan, S., Keerthi, S.S.: Predictive approaches for choosing hyperparameters in Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 631–637 (2000)
Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer Academic Publishers, Dordrecht (2004)
Chapter
Google Scholar
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8
MathSciNet
Article
MATH
Google Scholar
Tawarmalani, M., Sahinidis, N.V., Pardalos, P.: Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. In: Nonconvex Optimization and Its Applications, vol. 65. Springer, Boston, MA (2002). https://doi.org/10.1007/978-1-4757-3532-1
Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim. 59(2–3), 633–662 (2014). https://doi.org/10.1007/s10898-014-0176-0
MathSciNet
Article
MATH
Google Scholar
Ulmasov, D., Baroukh, C., Chachuat, B., Deisenroth, M.P., Misener, R.: Bayesian optimization with dimension scheduling: application to biological systems. In: Computer Aided Chemical Engineering, vol. 38, pp. 1051–1056. Elsevier (2016). https://doi.org/10.1016/B978-0-444-63428-3.50180-6
Von Stosch, M., Oliveira, R., Peres, J., de Azevedo, S.F.: Hybrid semi-parametric modeling in process systems engineering: past, present and future. Comput. Chem. Eng. 60, 86–101 (2014). https://doi.org/10.1016/j.compchemeng.2013.08.008
Article
Google Scholar
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
MathSciNet
Article
Google Scholar
Wang, J., Hertzmann, A., Fleet, D.J.: Gaussian process dynamical models. In: Advances in Neural Information Processing Systems, pp. 1441–1448 (2006)
Wechsung, A., Scott, J.K., Watson, H.A.J., Barton, P.I.: Reverse propagation of McCormick relaxations. J. Glob. Optim. 63(1), 1–36 (2015). https://doi.org/10.1007/s10898-015-0303-6
MathSciNet
Article
MATH
Google Scholar
Wiebe, J., Cecílio, I., Dunlop, J., Misener, R.: A robust approach to warped Gaussian process-constrained optimization. arXiv:2006.08222 (2020)
Wilson, J., Hutter, F., Deisenroth, M.: Maximizing acquisition functions for Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 9884–9895 (2018)