Skip to main content
Log in

Patterns of morphological development in Scyphozoa ephyrae (Cnidaria, Medusozoa)

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

In order to investigate possible differences and patterns of body-plan morphogenesis among Scyphozoa, we described the morphology and development of the bell and oral arms of 11 species. We built a model for the development of the group and provide a guide for recognizing development stages. In general, the bell diameter was more efficient than age (days) to identify the stage of development, which suggests that the events of morphogenesis depend more on body size than on age. We used measurements of bell and oral arm to build growth curves and described the timing of developmental events (e.g., appearance of digitata, velar lappets and oral arms, filling of interlobe gaps) and patterns of morphogenesis (contour of marginal lappets, branching of oral arms, and presence of structures/appendages on the oral arms). The time until the appearance of digitata and velar lappets, the marginal lappet contour, and the presence of lateral folds in oral arms supported a phylogenetic relationship between the “Semaeostomeae” and Rhizostomeae (Dactyliophorae and Kolpophorae) lineages. “Semaeostomeae” jellyfish with digitata (family Ulmaridae) and differentiated velar lappets developed such structures at larger bell diameters than rhizostomes; only Dactyliophorae rhizostomes had serrated contour of the lappets; only species of Rhizostomeae showed development of the lateral folds; and only Ulmaridae and Rhizostomeae had differentiated appearance of the velar lappets. We propose a specific definition of oral arms that is based on morphological and functional features. Therefore, estimating development timing and describing the way that these structures develop can help to understand how jellyfish feeding strategies change during initial growth and how the changes in these structures can reflect the differences in feeding habits among the groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, London

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bayha KM, Dawson MN (2010) New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. Biol Bull 219(3):249–267

    Article  PubMed  Google Scholar 

  • Bayha KM, Dawson MN, Collins AG, Barbeitos MS, Haddock SHD (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50:436–455

    Article  CAS  PubMed  Google Scholar 

  • Bolker B, R Development Core Team (2020) bbmle: tools for general maximum likelihood estimation. R package version 1.0.23.1. https://CRAN.R-project.org/package=bbmle. Accessed May 2021

  • Chiaverano LM, Graham WM (2017) Morphological plasticity in Aurelia polyps, with subsequent effects on asexual fecundity and morphology of young medusae. Mar Ecol Prog Ser 582:7992

    Article  CAS  Google Scholar 

  • Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432

    Article  Google Scholar 

  • Collins AG (2009) Recent insights into cnidarian phylogeny. Smithson Contrib Mar Sci 38:139–149

    Google Scholar 

  • Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115

    Article  PubMed  Google Scholar 

  • Costello JH, Colin SP (1995) Flow and feeding by swimming scyphomedusae. Mar Biol 124:399–406

    Article  Google Scholar 

  • Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127:265–290

    Article  Google Scholar 

  • Costello JH, Colin SP, Dabiri JO, Gemmell BJ, Lucas KN, Sutherland KR (2020) The hydrodynamics of jellyfish swimming. Annu Rev Mar Sci 13:375–396

    Article  Google Scholar 

  • Dawson MN (2004) Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa. Hydrobiologia 530(531):249–260

    Google Scholar 

  • Dong J, Jiang LX, Tan KF, Liu HY, Purcell JE, Li PJ, Ye CC (2009) Stock enhancement of the edible jellyfish (Rhopilema esculentum Kishinouye) in Liaodong Bay, China: a review. Hydrobiologia 616:113–118

    Article  Google Scholar 

  • Gohar HAF, Eisawy AM (1960) The biology of Cassiopea andromeda (from the Red Sea) (with a note on the species problem). Publ Mar Biol Sta Al-Ghardaqa 11:3–39

    Google Scholar 

  • Gómez Daglio L, Dawson MN (2017) Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. Invertebr Syst 31:635–663

    Article  Google Scholar 

  • Haeckel E (1880) Das System der Medusen. I, 2: System der Acraspeden. Gustav Fischer, Jena, 361-672 pp.

  • Hansson LJ (1997) Capture and digestion of the scyphozoan jellyfish Aurelia aurita by Cyanea capillata and prey response to predator contact. J Plankton Res 19:195–208

    Article  Google Scholar 

  • Helm RR (2018) Evolution and development of scyphozoan jellyfish. Biol Rev 93:1228–1250

    Article  PubMed  Google Scholar 

  • Hervé M (2020) RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-77. https://CRAN.R-project.org/package=RVAideMemoire. Accessed May 2021

  • Higgins JE, Ford MD, Costello JH (2008) Transitions in morphology, nematocyst distribution, fluid motions, and prey capture during development of the scyphomedusa Cyanea capillata. Biol Bull 214:29–41

    Article  PubMed  Google Scholar 

  • Holst S, Sotje I, Tiemann H (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Jarms G, Morandini AC (2019) World atlas of jellyfish, 1st edn. Dölling und Galitz Verlag, Hamburg

    Google Scholar 

  • Jordano MDA, Morandini AC, Nagata RM (2020) Is phenotypic plasticity determined by temperature and fluid regime in filter-feeding gelatinous organisms? J Exp Mar Biol Ecol 522:151238

    Article  Google Scholar 

  • Kawahara M, Uye S, Ohtsu K, Iizumi H (2006) Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar Ecol Prog Ser 307:161–173

    Article  Google Scholar 

  • Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikinger R (1992) Cotylorhiza tuberculata (Cnidaria: Scyphozoa) – life history of a stationary population. PSZN I Mar Ecol 13:333–362

  • Kishinouye K (1891) Bizen kurage. Zoological Magazine (Dobutsugaku zasshi) 3(28):53

    Google Scholar 

  • Larson RJ (1986) The feeding and growth of the sea nettle, Chrysaora quinquecirrha (Desor), in the laboratory. Estuaries 9:376–379

    Article  Google Scholar 

  • Larson RJ (1987) First report of the little-known scyphomedusa Drymonema dalmatinum in the Caribbean Sea, with notes on its biology. Bull Mar Sci 40:437–441

    Google Scholar 

  • Lawley JW, Gamero-Mora E, Maronna MM, Chiaverano LM, Stampar SN, Hopcroft RR, Collins AG, Morandini AC (2021) The importance of molecular characters when morphological variability hinders diagnosability: systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa). PeerJ 9:e11954

    Article  PubMed  PubMed Central  Google Scholar 

  • Length RV (2016) Least-Squares Means: The R Package lsmeans. J Stat Softw 69:1–33

    Google Scholar 

  • Lesson RP (1830a) Centurie zoologique, ou, Choix d'animaux rares, nouveaux ou imparfaitement connus. Paris & Strasbourg: F.G. Levrault and Bruxelles: Librairie parisienne. x + 11-244, 80 pls.

  • Lesson RP (1830b) Voyage autour du monde, exécuté par ordre du Roi, sur la corvette de Sa Majesté, La Coquille, pendant les années 1822, 1823, 1824 et 1825. Zoologie 2(1):1–471 Paris: Arthus Bertrand

    Google Scholar 

  • Lilley MKS, Elineau A, Ferraris M, Thiéry A, Stemmann L, Gorsky G, Lombard F (2014) Individual shrinking to enhance population survival: quantifying the reproductive and metabolic expenditures of a starving jellyfish, Pelagia noctiluca. J Plankton Res 36:1585–1597

    Article  CAS  Google Scholar 

  • Macri S (1778) Nuove osservazioni intorno la storia naturale del polmone marino degli antichi. Naples, p 36

  • Mayer AG (1915) Medusae of the Philippines and of Torres Straits. Being a report on the Scyphomedusae collected by the U.S. Fisheries Bureau steamer ‘Albatross’ in the Philippine Islands and Malay Archipelago, 1907–1910, and upon the medusae collected by the expedition of the Carnegie Institution of Washington to Torres Straits, Australia, in 1913. Papers of the Tortugas Laboratory of the Carnegie Institution of Washington 8:157–202.

  • Morandini AC, Ascher D, Stampar SN, Ferreira JF (2005) Cubozoa e Scyphozoa (Cnidaria: Medusozoa) de águas costeiras do Brasil. Iheringia, Sér Zool 95:281–294

    Article  Google Scholar 

  • Nagata RM, Morandini AC, Colin SP, Migotto AE, Costello JH (2016) Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Mar Ecol Prog Ser 557:145–159

    Article  Google Scholar 

  • Nagata RM, Teixeira-Amaral P, Lemos VR, Jordano MA, Muxagata E, Morandini AC (2021) First description of wild-collected ephyrae of Lychnorhiza lucerna (Cnidaria, Scyphozoa). An Acad Bras Cienc 93:e20190574

    Article  PubMed  Google Scholar 

  • Nawroth JC, Feitl KE, Colin SP, Costello JH, Dabiri JO (2010) Phenotypic plasticity in juvenile jellyfish medusae facilitates effective animal–fluid interaction. Biol Lett 6:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt KA (2000) Life history and settlement preferences of the edible jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Biol 136:269–279

    Article  Google Scholar 

  • Purcell JE (1990) Soft-bodied zooplankton predators and competitors of larval herring (Clupea harengus pallasi) at herring spawning grounds in British Columbia. Can J Fish Aquat Sci 47:505–515

    Article  Google Scholar 

  • Quoy JRC, Gaimard JP (1824) Voyage autour du monde, entrepis par ordre du Roi, sous les ministère et conformément aux instructions de S. Exc. M. Le Vicomte du Bouchage, secrétaire d`état au départment de la Marine, exécuté sur les corvettes de S. M. l'Uranie et la Physicienne, pendant les années 1817, 1818, 1819 et 1820. Chez Pillet Aîné, Paris, 712 pp.

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Avaliable in: https://www.R-project.org. Accessed 10 Aug 2020

  • Russell FS (1970) The Medusae of the British Isles, volume II: Pelagic Scyphozoa, with a supplement to the first volume on Hydromedusae. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Schiariti A, Kawahara M, Uye S, Mianzan HW (2008) Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae). Mar Biol 156:1–12

    Article  Google Scholar 

  • Scorrano S, Aglieri G, Boero F, Dawson MN, Piraino S (2017) Unmasking Aurelia species in the Mediterranean Sea: an integrative morphometric and molecular approach. Zool J Linn Soc 180:243–267

    Google Scholar 

  • Sötje I, Tiemann H, Båmstedt U (2007) Trophic ecology and the related functional morphology of the deepwater medusa Periphylla periphylla (Scyphozoa, Coronatae). Mar Biol 150:329–343

    Article  Google Scholar 

  • Stiasny G (1921) Studien über Rhizostomeen mit besonderer Berücksichtigung der Fauna des Malaiischen Archipels nebst einer Revision des Systems. Capita Zoologica, Verh Syst-Zool Gebied 1:1–179

    Google Scholar 

  • Straehler-Pohl I, Jarms G (2010) Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia 645:3–21

    Article  Google Scholar 

  • Straehler-Pohl I, Widmer CL, Morandini AC (2011) Characterizations of juvenile stages of some semaeostome Scyphozoa (Cnidaria), with recognition of a new family (Phacellophoridae). Zootaxa 2741:1–37

    Article  Google Scholar 

  • Sugiura Y (1966) On the life-history of rhizostome medusae IV. Cephea cephea. Embryologia 9:105–122

    Article  CAS  PubMed  Google Scholar 

  • Thiel ME (1970) Über den zweifachen stammesgeschichtlichen ("biphyletischen") Ursprung der Rhizostomae (Scyphomedusae) und ihre Aufteilung in die zwei neuen Ordnungen Cepheida und Rhizostomida. Abh Ver Naturwiss Ver Hamburg 14:145–168

    Google Scholar 

  • Thiel ME (1976) Die Cassiopeida (Arcadomyariae Maas, 1903, Kampylomyariae Stiasny, 1921) als dritte Ordnung der Rhizostomae (Scyphomedusae) und die Erhebung der letzteren zu der Überordnung Rhizostomoidea (Wurzelmundartige) Supraord. nov. Mitt Hamburg Zool Mus Inst 73:1–16

    Google Scholar 

  • Tronolone VB, Morandini AC, Migotto AE (2002) On the occurrence of scyphozoan ephyrae (Cnidaria, Scyphozoa, Semaeostomeae and Rhizostomeae) in the southeastern Brazilian coast. Biota Neotrop 2:1–18

    Article  Google Scholar 

  • Uchida T (1926) The anatomy and development of a rhizostome medusa, Mastigias papua L. Agassiz, with observations on the phylogeny of Rhizostomeae. I. J Fac Sci, Imper Univ Tokyo (Section VI, Zoology) 1:45–95.

  • von Lendenfeld R (1884) The scyphomedusae of the southern hemisphere. Part III. Proc Linn Soc N S W 9(2):259–306

    Google Scholar 

  • Widmer CL (2005) Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). J Mar Biol Assoc UK 85:569–573

  • Widmer CL (2008) How to keep jellyfish in aquariums: an introductory guide for maintaining healthy jellies. Wheatmark, Tucson

    Google Scholar 

  • Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M, Collins AG, Haddock SHD, Dunn CW, Cartwright P (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS ONE 10:e0139068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from the Kitasato University School of Marine Biosciences (Japan) and the Cnidaria Laboratory at USP (Brazil), and the staff from the Enoshima Aquarium (Japan) for providing some specimens for our study. This is a contribution of NP-BioMar USP. We thank Edgar Gamero-Mora, Jonathan W. Lawley, Gerda Ucharm, Takashi Murai, Alvaro Esteves Migotto, and Roland Halbauer for providing the representative figures of Cassiopea sp.; Catostylus mosaicus; Aurelia malayensis; Cotylorhiza tuberculata and Rhopilema esculentum; Mastigias papua, Phyllorhiza punctata, and Lychnorhiza lucerna; and Chrysaora plocamia, respectively. We also thank two anonymous referees for insightful comments on the manuscript.

Funding

MAJ received a MSc scholarship from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/25142-8, 2016/24801-0), Programa de Excelência Acadêmica da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES PROEX). ACM was funded by FAPESP (2015/21007-9) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 309440/2019-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayara de A. Jordano.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics approval

No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with unregulated invertebrate species.

Sampling and field studies

The study does not contain sampling material or data from field studies.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Author contribution

MAJ, RMN, and ACM conceived the study and acquired the necessary funding; MAJ conducted the experiments, data collection, analyzed data, and produced all figures. MAJ, HM, RMN, and ACM collaborated equally on writing and approved the final manuscript.

Additional information

Communicated by S. Piraino

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordano, M.d.A., Miyake, H., Nagata, R.M. et al. Patterns of morphological development in Scyphozoa ephyrae (Cnidaria, Medusozoa). Mar. Biodivers. 52, 31 (2022). https://doi.org/10.1007/s12526-022-01269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-022-01269-1

Keywords

Navigation