Skip to main content

Advertisement

Log in

Using the Capitella complex to investigate the effects of sympatric cryptic species distinction on ecological and monitoring studies in coastal areas

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The polychaete Capitella capitata is historically one of the most commonly used indicators of organic enrichment in marine benthic environments. However, this taxon has been used to refer to several cryptic species with distinct environmental tolerances, which may compromise ecological assessment and monitoring programs. In this study, we aimed to (1) assess the overlap and patterns of dominance in the spatial and temporal distribution and response to environmental variability of different species of the C. capitata complex in an urbanized coastal area and (2) investigate how the taxonomic resolution (species vs genera) could affect the observed patterns (i.e., whether the acknowledgement of cryptic species may affect the outcome of ecological assessments). Eight sampling campaigns were carried out from September 2011 to September 2013 in a heavily anthropized tidal flat in Southeastern Brazil. Four species of the complex were identified. Capitella nonatoi was the most abundant (~80% of the total abundance). Overall, the four species of Capitella showed high overlap in spatial distribution, especially between the most abundant ones. At community level, taxonomic resolution did not influence the perceived relationships with environmental and spatial variables, a result likely driven by the dominance of C. nonatoi and relatively high spatial overlap among species. The assemblage was influenced mainly by chlorophyll a and hydrocarbons, corroborating the indicator status of the taxa. At species level, however, individual response to environmental variability differed, suggesting that species may have distinct requirements. Thus, the use of a particular taxonomic resolution in ecological studies depends on the questions to be addressed. The recognition of cryptic diversity may be important for biodiversity assessments and studies at the population level (i.e., dynamics, behavior). Although further studies are needed to corroborate the observed patterns of dominance at larger scales, for community-level assessments, our results suggest that identifying Capitella to species level may not be needed for local ecological monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agatz M, Rasmus RM, Deventer B (1999) Structural changes in the benthic diatom community along an eutrophication gradient on a tidal flat. Helgol Mar Res 53:92–101

    Article  Google Scholar 

  • Albano MJ, Lana PC, Bremec C, Elías R, Martins CC, Venturini N, Muniz P, Rivero S, Vallarino EA, Obenat S (2013) Macrobenthos and multi-molecular markers as indicators of environmental contamination in a South American port (Mar del Plata, Southwest Atlantic). Mar Poll Bull 73:102–114

    Article  CAS  Google Scholar 

  • Amaral ACZ, Migotto AE, Turra A, Schaeffer-Novelli Y (2010) Araçá: biodiversidade, impactos e ameaças. Biota Neotrop 10:219–263

    Article  Google Scholar 

  • Amaral ACZ, Turra A, Ciotti AM, Rossi-Wongtschowski CLB, Schaeffer-Novelli Y (2016) Life in the Araçá Bay: diversity and importance. Lume, São Paulo

  • Bach L, Palmqvist A, Rasmussen LJ, Forbes VE (2005) Differences in PAH tolerance between Capitella species: underlying biochemical mechanisms. Aquat Toxicol 74:307–319

    Article  CAS  PubMed  Google Scholar 

  • Bickford D, Lohman JE, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Bivand R, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Blake JA, Grassle JP, Eckelbarger KJ (2009) Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature of confirmed records. Zoosymposia 2:25–53

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Blasco-Moreno A, Pérez-Casany M, Puig P, Morante M, Castelss E (2019) What does a zero mean? Understanding false, randoms and structural zeros in ecology. Method Ecol Evol 10:949–959

    Article  Google Scholar 

  • Bortolus A (2008) Error cascades in biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO 37:114–118

    Article  PubMed  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Burrough PA, McDonnell RA (1998) Creating continuous surface from point data. In: Burrough PA, Goodchild MF, McDonnell RA, Switzer P, Worboys M (eds) Principles of geographic information systems. Oxford University Press, Oxford, UK

    Google Scholar 

  • Bustos-Baez S, Frid C (2003) Using indicator species to assess the state of macrobenthic communities. Hydrobiologia 496:299–309

    Article  Google Scholar 

  • Cardillo M, Warren DL (2016) Analysing patterns of spatial and niche overlap among species at multiple resolutions. Glob Ecol Biogeogr 25:951–963

    Article  Google Scholar 

  • Chaouti A, Azirar A, Bayed A (2019) Macrofaunal spatial distribution and community structure in a lagoon without river discharge (the Oualidia Lagoon, NW Morocco). Mar Ecol:e12557

  • Checon HH, Amaral ACZ (2016) Taxonomic sufficiency and the influence of rare species on variation partitioning analysis of a polychaete community. Mar Ecol 38:e12384

    Article  Google Scholar 

  • Checon HH, Corte GN, Silva CF, Schaeffer-Novelli Y, Amaral ACZ (2017) Mangrove vegetation decreases density but does not affect species richness and trophic structure of intertidal polychaete assemblages. Hydrobiologia 795:169–179

    Article  Google Scholar 

  • Checon HH, Vieira DC, Corte GN, Sousa ECPM, Fonseca G, Amaral ACZ (2018) Defining soft-bottom habitats and potential indicator species as tools for monitoring coastal systems: a case study in a subtropical bay. Ocean Coast Manag 164:68–78

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–266

    Article  Google Scholar 

  • Ciotti AM, Ferreira A, Giannini MFC (2018) Seasonal and event driven changes in the phytoplankton communities in the Araçá Bay and adjacent waters. Ocean Coast Manag 164:14–31

    Article  Google Scholar 

  • Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52:567–576

    Article  PubMed  Google Scholar 

  • Core Team R (2019) R: a language and environment and statistical computing. R Foundation for Statistical Computing, Vienna, Austria www.R-project.org

    Google Scholar 

  • Corte GN, Schlacher TA, Checon HH, Barboza CAM, Siegle E, Coleman RA, Amaral ACZ (2017) Storm effects on intertidal invertebrates: increased beta diversity of few individual and species. PeerJ 5:e3360

    Article  PubMed  PubMed Central  Google Scholar 

  • Corte GN, Gonçalves-Souza T, Checon HH, Siegle E, Coleman RA, Amaral ACZ (2019) When time affects space: dispersal ability and extreme weather events determine metacommunity organization in marine sediments. Mar Environ Res 136:139–152

    Article  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Letters 8:1175–1182

    Article  Google Scholar 

  • Cullain N, McIver R, Schmidt AL, Milewski I, Lotze HK (2018) Impacts of organic enrichment from finfish aquaculture on seagrass beds and associated macrofaunal communities in Atlantic Canada. PeerJ 6:e5630

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauer DM, Conner WG (1980) Effects of moderate sewage input on benthic polychaete populations. Estuar Coast Mar Sci 10:335–346

    Article  Google Scholar 

  • Desrosiers C, Leflaive J, Eulin A, Ten-Hage L (2013) Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecol Indic 32:25–34

    Article  CAS  Google Scholar 

  • Dionne K, Vergilino R, Dufresne F, Charles F, Nozais C (2011) No evidence for temporal variation in a cryptic species community of freshwater amphipods of the Hyalella azteca species complex. Diversity 3:390–404

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices. Ecol Model 196:483–493

    Article  Google Scholar 

  • Dray S, Legendre P, Blanchet FG (2016) packfor: forward selection with permutation. Available at https://R-Forge.R-project.org/projects/sedar

  • Elías R, Rivera MS, Palacios JR, Vallarino EA (2006) Sewage induced disturbance of polychaetes inhabiting intertidal mussel beds of Brachidontes rodriguezii of Mar del Plata (SW Atlantic, Argentina). Sci Mar 70:187–196

    Article  Google Scholar 

  • Ellis D (1985) Taxonomic sufficiency in pollution assessment. Mar Poll Bull 16:442–461

    Article  Google Scholar 

  • Fiser Z, Altematt F, Zaksek V, Knapic T, Fiser C (2015) Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four Niphargus species. PlosOne 10:e0134384

    Article  Google Scholar 

  • Fiser C, Robinson CT, Malard F (2017) Cryptic species as a window into the paradigm shift of species concept. Mol Ecol 27:613–635

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River Bar: a study in the significance of grain-size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Forbes VE, Forbes TL, Holmes M (1996) Inducible metabolism of fluoranthene by the opportunistic polychaete Capitella sp. I. Mar Ecol Prog Ser 132:63–70

    Article  CAS  Google Scholar 

  • Gamenick I, Abbiati M, Giere O (1998) Field distribution and sulphide tolerance of Capitella capitata (Annelida: Polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species. Mar Biol 130:447–453

    Article  CAS  Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253

    CAS  Google Scholar 

  • Giangrande A, Licciano M, Musco L (2005) Polychaetes as environmental indicators revisited. Mar Pollut Bull 50:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Gomez Gesteira JL, Dauvin JC, Salvande Fraga M (2003) Taxonomic level for assessing oil spills effects on soft-bottom sublittoral benthic communities. Mar Pollut Bull 46:562–572

    Article  CAS  PubMed  Google Scholar 

  • Gorman D, Turra A, Connoly RM, Olds AD, Schlacher TA (2017) Monitoring nitrogen pollution in seasonally pulsed coastal waters requires judicious choice of indicator species. Mar Pollut Bull 122:149–155

    Article  CAS  PubMed  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institute Press, Washington

    Google Scholar 

  • Gotelli NJ, Hart EM, Ellison AM (2015) EcoSimR: null model analysis for ecological data. Available at http://github.com/gotellilab/EcoSimR

  • Grassle JF, Grassle JP (1976) Sibling species in the marine pollution indicator Capitella (Polychaeta). Science 192:567–569

    Article  CAS  PubMed  Google Scholar 

  • Grassle JF, Grassle JP (1977) Temporal adaptations in sibling species of Capitella. In: Coull BC (ed) Ecology of Marine Benthos. University of South California Press

  • Gray JS (1989) Effects of environmental stress on species-rich assemblages. Biol J Linn Soc 37:19–32

    Article  Google Scholar 

  • Guerra-García JM, González-Vila FJ, García-Gómez JC (2003) Aliphatic hydrocarbon pollution and macrobenthic assemblages in Ceuta harbour: a multivariate approach. Mar Ecol Prog Ser 263:127–138

    Article  Google Scholar 

  • Hijmans RJ (2018) Raster: geographic data analysis and modeling. Available at https://CRAN.R-project.org/package=raster

  • Hilliard J, Hajduk M, Schulze A (2016) Species delineation in the Capitella species complex: geographic and genetic variation. Invert Biol 135:415–422

    Article  Google Scholar 

  • Hilliard JH, Karlen D, Dix T, Markham S, Schulze A (2020) Comparative species abundance modelling of Capitellidae (Annelida) in Tampa Bay, Florida. Mar Ecol Progr Ser 653:105–119

    Article  CAS  Google Scholar 

  • Hochstein R, Zhang Q, Sadowsky MJ, Forbes VE (2019) The deposit feeder Capitella teleta has a unique and relatively complex microbiome likely supporting its ability to degrade pollutants. Sci Total Environ 160:547–554

    Article  Google Scholar 

  • Hofer U, Bersier L-F, Borcard D (2004) Relating niche and spatial overlap at the community level. Oikos 106:366–376

    Article  Google Scholar 

  • Hurtado LA, Mateos M, Mattos G, Liu S, Haye PA, Paiva PC (2016) Multiple transisthmian divergences, extensive cryptic diversity, occasional long-distance dispersal, and biogeographical patterns in a marine coastal isopod with an amphi-American distribution. Ecol Evol 6:7794–7808

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong M-K, Wi JH, Suh H-L (2018) A reassessment of Capitella species (Polychaeta: Capitellidae) from Korean coastal waters, with morphological and molecular evidence. Mar Biodivers 48:1969–1978

    Article  Google Scholar 

  • Karakassis I, Tsapakis N, Hatziyanni E, Papadopoulou K-N, Plaiti W (2000) Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J Mar Sci 57:1462–1471

    Article  Google Scholar 

  • Kim BSM, Bícego MC, Taniguchi S, Siegle E, Oliveira R, Alcántara-Carrió J, Figueira RCL (2018) Organic and inorganic contamination in sediments from Araçá Bay, São Sebastião, Brazil. Ocean Coast Manag 164:42–51

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:186–216

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Leopardas V, Honda K, Go GA, Bolisay K, Pantanallo AD, Uy W, Fortes W, Nakaoka M (2016) Variation in macrofaunal communities of seagrass beds along a pollution gradient in Bolinao, northwestern Philippines. Mar Pollut Bull 105:310–318

    Article  CAS  PubMed  Google Scholar 

  • Linke-Gamenick I, Forbes VE, Méndez N (2000) Effects of chronic fluoranthene exposure on sibling species of Capitella with different development modes. Mar Ecol Prog Ser 203:191–203

    Article  CAS  Google Scholar 

  • Linton DL, Taghon GL (2000) Feeding, growth and fecundity of Capitella sp. I in relation to sediment organic concentration. Mar Ecol Prog Ser 205:229–240

    Article  Google Scholar 

  • Livi P, Tomassetti P, Vani D, Marino G (2017) Genetic evidence of multiple phyletic lineages of Capitella capitata (Fabricius 1780) complex in the Mediterranean Region. J Mediterr Ecol 15:5–11

    Google Scholar 

  • Loring GH, Rantala RTT (1992) Manual for geochemical analyses of marine sediments and suspended organic matter. Earth Sci Rev 51:611–624

    Google Scholar 

  • Mani-Peres C, Xavier LY, Santos CR, Turra A (2016) Stakeholders perception of local environmental changes as a tool of impact assessment in coastal zones. Ocean Coast Manag 119:135–145

    Article  Google Scholar 

  • Martínez G, Arim M, Defeo O (2018) Genetics, taxonomy and species complex in sandy beach macrofauna: Reply to Mattos et al. (2018). Mar Ecol Prog Ser 601:273–275

    Article  Google Scholar 

  • Mattos G, Paiva PC, Mateos M, Haye PA, Hurtado LA (2018) The cost of ignoring cryptic diversity in macroecological studies: comments on Martinez et al. (2017). Mar Ecol Prog Ser 601:269–271

    Article  Google Scholar 

  • Maurer D (2000) The dark side of taxonomic sufficiency (TS). Mar Pollut Bull 40:98–101

    Article  CAS  Google Scholar 

  • Méndez N, Baird DJ (2002) Effects of cadmium on sediment processing on members of the Capitella species complex. Environ Pollut 120:299–305

    Article  PubMed  Google Scholar 

  • Méndez N, Linke-Gamenick I, Forbes VE (2000) Variability in reproductive mode and larval development within the Capitella capitata species complex. Invertebr Reprod Dev 38:131–142

    Article  Google Scholar 

  • Nygren A (2014) Cryptic polychaete diversity: a review. Zool Scr 43:172–183

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. Available at https://CRAN.R-project.org/package=vegan

  • Pagliosa PR (2005) Another diet of worms: the applicability of polychaete feeding guilds as a useful conceptual framework and biological variable. Mar Ecol 26:246–254

    Article  Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–321

    Google Scholar 

  • Pebesma EJ (2004) Multivariate statistical in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Pechenik JA, Berard R, Kerr L (2000) Effects of reduced salinity on survival, growth, reproductive success, and energetics of the euryhaline polychaete Capitella sp. I. J Exper Mar Biol Ecol 254:19–35

    Article  CAS  Google Scholar 

  • Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178

    Article  PubMed  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Global Ecol Biogeog 19:174–184

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pianka E (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  • Plante-Cuny M-R (1978) Recherches sur la production primaire benthique en milieu marin tropical. I. Variations de la production primaire et des teneurs en pigments photosynthétiques sur quelques fonds sableaux. Valeur des résultats obtenus par la méthode du 14C. Cahiers ORSTOM 11:317–348

    Google Scholar 

  • Quillien N, Nordström MC, Gauthier O, Bonsdorff E, Paulet YM, Grall J (2015) Effects of macroalgae accumulations on the variability in zoobenthos of high-energy macrotidal sandy beaches. Mar Ecol Progr Ser 522:97–114

    Article  Google Scholar 

  • Renz JR, Forster S (2013) Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis and M. neglecta from the Baltic sea. Limnol Oceanogr 58:2046–2058

    Article  Google Scholar 

  • Rivero MS, Elías R, Vallarino EA (2005) First survey of macrofauna in the Mar Del Plata harbor (Argentina) and the use of polychaetes as pollution indicator. Rev Biol Mar Oceanogr 40:101–108

    Article  Google Scholar 

  • Rodil IF, Lucena-Moya P, Lastra M (2018) The importance of environmental and spatial factors in the metacommunity dynamics of exposed sandy beach benthic invertebrates. Estuar Coasts 41:206–217

    Article  Google Scholar 

  • Ryu J, Khim JS, Kang S-G, Kang D, Lee C-h, C-h K (2011) The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environ Pollut 159:2622–2629

    Article  CAS  PubMed  Google Scholar 

  • Sampieri BR, Steiner TM, Baroni PC, Silva CF, Teixeira MAL, Vieira PL, Costa FO, Amaral ACZ (2020) How oogenesis analysis with DNA barcoding can help to elucidate taxonomic ambiguities: a polychaete-based study. Biota Neotrop 20:e20200959

    Article  Google Scholar 

  • Silva CF, Seixas VC, Barroso R, Di Domenico M, Amaral ACZ, Paiva PC (2017) Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian Coast. PlosOne 12:e0177760

    Article  Google Scholar 

  • Soares LSH, Arantes LPL, Pucci MJ (2018) Food web of a subtropical tidal flat, Atlantic Southwestern: temporal and spatial variability of the primary organic sources. Ocean Coast Manag 164:104–114

    Article  Google Scholar 

  • Soares-Gomes A, Mendes CLT, Tavares M, Santi L (2012) Taxonomic sufficiency of a polychaete taxocenes for estuary monitoring. Ecol Indicat 15:149–156

    Article  CAS  Google Scholar 

  • Terlizzi A, Bevilacqua S, Fraschetti S, Boero F (2003) Taxonomic sufficiency and increasing insufficiency of taxonomic expertise. Mar Pollut Bull 46:556–561

    Article  CAS  PubMed  Google Scholar 

  • Tomassetti P, Gennaro P, Lattanzi L, Mercatali I, Persia E, Vani D, Porrello S (2016) Benthic community response to sediment organic enrichment by Mediterranean fish farms: case studies. Aquaculture 450:262–272

    Article  CAS  Google Scholar 

  • Tomioka S, Kondoh T, Sato-Okoshi W, Ito K, Kakui K, Kajihara H (2016) Cosmopolitan or cryptic species? A case study of Capitella teleta (Annelida: Capitellidae). Zool Sci 33:545–554

    Article  Google Scholar 

  • Tsutsumi H (1987) Population dynamics of Capitella capitata (Polychaeta; Capitellidae) in an organically polluted cove. Mar Ecol Prog Ser 36:139–149

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP) (1992) Determinations of petroleum hydrocarbons in sediment. Reference methods for marine pollution studies 20:97p

    Google Scholar 

  • Valdemarsen T, Hansen PK, Ervik A, Bannister RJ (2015) Impact of deep-water fish farms on benthic macrofauna communities under different hydrodynamic conditions. Mar Pollut Bull 101:776–783

    Article  CAS  PubMed  Google Scholar 

  • Van Campenhaut J, Derycke S, Moens T, Vanreusel A (2014) Differences in life-histories refute ecological equivalence of cryptic species and provide clues to the origin of bathyal Halomonhystera (Nematoda). PlosOne 9:e111889

    Article  Google Scholar 

  • Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vs negative binomial regression: how should we model overdispersed count data. Ecology 88:2766–2772

    Article  Google Scholar 

  • Westheide W, Schmidt H (2003) Cosmopolitan vs cryptic meiofaunal polychaete species: an approach to molecular taxonomy. Helgol Mar Res 57:1–6

    Article  Google Scholar 

  • Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Statist Soft 27:1–25

    Article  Google Scholar 

  • Zettler MC, Proffitt EC, Darr A, Degraer S, Devriese L, Greathead C, Kotta J, Magni P, Martin G, Reiss H, Speybroeck J, Tagliapietra D, Van Hoey G, Ysebaert T (2013) On the myths of indicator species: issues and further consideration in the use of static concepts for ecological applications. PlosOne 8:e78219

    Article  CAS  Google Scholar 

  • Zhang J (2016) spaa: Species association analysis. Available at https://CRAN.R-project.org/package=spaa

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This manuscript was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through grants to HH Checon (150316/2018-6) and a productivity grant to ACZ Amaral (301551/2019-7). We also thank the Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP) for financial support to HH Checon (2018/22036-0) and GN Corte (2016/10810-8 and 2017/17071-9) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for institutional funding to CF Silva. We would like to thank Rachel Daolio, Decio Gomes, Nathalia Padovanni, Thalita Forroni, Angélica Godoy, Juliana Vitali, and Rafael Murayama for their assistance with sampling procedures; Danilo Vieira for providing the baseline scripts for spatial interpolation analysis; Ediunetty Sousa for providing the microphytobenthic data; and Yasmina Shah Esmaeili for the English revision of the manuscript. We are also grateful to the Institute of Biology of the University of Campinas (IB/UNICAMP), the Center for Marine Biology of the University of São Paulo (CEBIMar/USP), and the Oceanographic Institute of the University of São Paulo (IO/USP) for their logistic support. We would also like to thank the three anonymous reviewers who helped improved the manuscript.

Funding

This manuscript was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through grants to HH Checon (150316/2018-6) and a productivity grant to ACZ Amaral (301551/2019-7). We also thank the Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP) for financial support to HH Checon (2018/22036-0) and GN Corte (2017/17071-9) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for institutional funding to CF Silva. This work was also supported by FAPESP under Project “Biodiversidade e funcionamento de um ecossistema costeiro subtropical: subsídios para gestão integrada” (BIOTA/FAPESP-Araçá) (2011/50317-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio H. Checon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No animal testing was performed during this study.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities. The study is compliant with CBD and Nagoya protocols.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author contribution

HHC, GNC, and CFS conducted the field sampling; CFS and ACZA carried out the identification of specimens; HHC carried out the data analysis; MCB carried out the analyses of hydrocarbons; HHC and GNC wrote the manuscript; ACZA coordinated the project and provided logistical support and funding acquisition; all authors have read and reviewed the manuscript.

Additional information

Communicated by P. C. Paiva

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1

(DOCX 20 kb)

Table S2

(DOCX 19 kb)

Table S3

(DOCX 20 kb)

Table S4

(DOCX 19 kb)

Table S5

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Checon, H.H., Corte, G.N., Silva, C.F. et al. Using the Capitella complex to investigate the effects of sympatric cryptic species distinction on ecological and monitoring studies in coastal areas. Mar. Biodivers. 51, 48 (2021). https://doi.org/10.1007/s12526-021-01185-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-021-01185-w

Keywords

Navigation