Skip to main content

Advertisement

Log in

Macrofauna abundance, species diversity and turnover at three sites in the Clipperton-Clarion Fracture Zone

  • CCZ Biodiversity
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The fauna of three sites in the Clipperton-Clarion Fracture Zone Region of the North Pacific Ocean were evaluated as part of multiple programs supported by the US National Oceanic and Atmospheric Administration. These localities (Site A in the west and Site C and a prospective reserve area 2893–2561 km to the east) cover the range of depths and productivity observed for the region. Macrofauna densities varied with productivity, with Site A with the lowest densities and the reserve area with the highest densities. Species diversities of Polychaeta, Isopoda and Tanaidacea showed differing trends compared to export productivity, using a bootstrapped lognormal method to estimate total species. Polychaeta had the highest estimated species at the high-productivity reserve site and the lowest values at the low-productivity site A. Tanaidacea had a similar trend to that of the polychaetes. Isopoda showed an opposite species–productivity trend, with highest estimated species at the low-productivity site A and lowest values at the high-productivity reserve site. Polychaetes were most similar between sites, while isopod similarities were low. Tanaid similarities between sites A and C resembled the polychaetes value. Species turnover for isopods was high, but much less so for polychaetes and tanaids, and may be related to the dispersal potential for each taxocene. Beta diversity predicts that the average isopod species in the CCFZ has a range of approximately 2200 km2 while a polychaete species range might exceed 10,000 km2. Data from a single taxocene cannot be used as a proxy for the entire deep-sea fauna because each group has its own ecological and evolutionary responses, as well as its own history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bischoff JL, Piper DZ (eds) (1979) Marine geology and oceanography of the Pacific manganese nodule province vol 9. Marine Science. Plenum (Springer US), New York

    Google Scholar 

  • Blake JA, Arnofsky PL (1999) Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402:57–106. doi:10.1023/a:1003784324125

    Article  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

  • Chao A, Chiu C-H (2016) Nonparametric estimation and comparison of species richness. Els, pp. 1–11. John Wiley & Sons, Ltd, Chichester

  • Cohen AC Jr (1950) Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples. Ann Math Stat 21:557–569

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates. Accessed 3 Nov 2016

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B 345:101–118

    Article  CAS  Google Scholar 

  • Craig JD (1979) The relationship between bathymetry and ferromanganese deposits in the north equatorial Pacific. Mar Geol 29:165–186. doi:10.1016/0025-3227(79)90107-5

    Article  CAS  Google Scholar 

  • Cunha MR, Wilson GDF (2003) Haplomunnidae (Crustacea: Isopoda) reviewed, with a description of an intact specimen of Thylakogaster Wilson & Hessler, 1974. Zootaxa 326:1–16

    Google Scholar 

  • de Moustier C (1985) Inference of manganese nodule coverage from Sea Beam acoustic backscattering data. Geophysics 50:989–1001. doi:10.1190/1.1441976

    Article  Google Scholar 

  • Dick RE, Foell EJ (1985) Analysis of SIO deep tow photographs of mining device tracks, “ECHO-1” cruise, mining test site. Deepsea Ventures, Inc., Gloucester Point, Virginia

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  Google Scholar 

  • Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48. doi:10.1080/00031305.1983.10483087

    Google Scholar 

  • Etter RJ, Grassle JF (1992) Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360:576–578

    Article  Google Scholar 

  • Franke H-D (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55. doi:10.1023/a:1003732307286

    Article  Google Scholar 

  • Gardner WD, Sullivan LG, Thorndike EM (1984) Long-term photographic, current, and nephelometer observations of manganese nodule environments in the Pacific. Earth Planet Sci Lett 70:95–109. doi:10.1016/0012-821X(84)90212-7

    Article  Google Scholar 

  • Glover AG, Smith CR (2003) The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environ Conserv 30:219–241

    Article  Google Scholar 

  • Glover AG, Smith CR, Paterson GLJ, Wilson GDF, Hawkins L, Sheader M (2002) Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Mar Ecol Prog Ser 240:157–170

    Article  Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Article  Google Scholar 

  • Grassle JF, Smith W (1976) A similarity measure sensitive to the contribution of rare species and its use in investigation of variation of marine benthic communities. Oecologia 25:13–22

    Article  PubMed  Google Scholar 

  • Harrison K (1987) Deep-sea asellote isopods of the north-east Atlantic: the family Thambematidae. Zool Scr 16:51–72

    Article  Google Scholar 

  • Hayes SP (1979) Benthic current observations at DOMES sites A, B, and C in the tropical central north pacific ocean. In: Bischoff JL, Piper DZ (eds) Marine geology and oceanography of the Pacific manganese nodule province. PlenuPress (Springer US), New York, pp 83–112

    Chapter  Google Scholar 

  • Hecker B, Paul AZ (1979) Abyssal community structure of the benthic infauna of the Eastern equatorial pacific: DOMES sites A, B, and C. In: Bischoff JL, Piper DZ (eds) Marine geology and oceanography of the Pacific manganese nodule province. Plenum (Springer US), New York, pp 287–308

    Chapter  Google Scholar 

  • Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based deposits. Ore Geol Rev 51:1–14

  • Hessler RR (1993) Swimming morphology in Eurycope cornuta (Isopoda: Asellota). J Crust Biol 13:667–674

  • Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate box cores in the central North pacific. Deep-Sea Res 21:185–209

    Google Scholar 

  • Hurlbert SN (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Johnson DA (1972) Ocean-floor erosion in the equatorial pacific. Geol Soc Am Bull 83:3121–3144. doi:10.1130/0016-7606(1972)83[3121:oeitep]2.0.co;2

    Article  Google Scholar 

  • Johnson WS, Stevens M, Watling L (2001) Reproduction and development of marine peracaridans. Adv Mar Biol 39:107–220

    Google Scholar 

  • Jumars PA (1976) Deep-sea species diversity: does it have a characteristic scale? J Mar Res 34:217–246

    Google Scholar 

  • Jumars PA (1977) Potential environmental impact of deep-sea manganese nodule mining: community analysis and prediction vol unpublished manuscript no.13. US National oceanic and atmospheric administration. Pacific Marine Environmental Laboratory, Seattle

    Google Scholar 

  • Jumars PA (1980) Impact of a pilot-scale manganese nodule mining test on the benthic community Contract No. 03-78-BOl-17. Department of Oceanography, University of Washington, Seattle

    Google Scholar 

  • Jumars PA (1981) Limits in predicting and detecting benthic community responses to manganese nodule mining. Mar Min 3:213–229

    Google Scholar 

  • Knoop PA, Owen RM, Morgan CL (1998) Regional variability in ferromanganese nodule composition: northeastern tropical. Pac Ocean Mar Geol 147:1–12. doi:10.1016/S0025-3227(97)00077-7

    Article  CAS  Google Scholar 

  • Lavelle JW, Ozturgut E, Swift SA, Erickson BH (1981) Dispersal and resedimentation of the benthic plume from deep-sea mining operations: a model with calibration. Mar Min 3:59–93

    Google Scholar 

  • Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ (2007) Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J Geophys Res Oceans 112:26. doi:10.1029/2006jc003706

    Article  Google Scholar 

  • Martino S, Parson LM (2012) A comparison between manganese nodules and cobalt crust economics in a scenario of mutual exclusivity. Mar Policy 36:790–800. doi:10.1016/j.marpol.2011.11.008

    Article  Google Scholar 

  • McAleece N, Gage JD, Lambshead PJD, Paterson GLJ (1997) BioDiversity professional statistics analysis software. Scottish Association for Marine Science and the Natural History Museum, London, http://www.sams.ac.uk/peter-lamont/biodiversity-pro. Accessed Oct 2016

    Google Scholar 

  • McClain CR, Rex MA (2015) Toward a conceptual understanding of beta-diversity. In: Futuyma DJ (ed) Annual review of ecology, evolution, and systematics, vol 46, pp. 623–642. doi:10.1146/annurev-ecolsys-120213-091640

  • Miljutin DM, Miljutina MA, Arbizu PM, Galéron J (2011) Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep Sea Res I Oceanogr Res Pap 58:885–897. doi:10.1016/j.dsr.2011.06.003

    Article  Google Scholar 

  • Morel A, Berthon J-F (1989) Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol Oceanogr 34:1545–1562. doi:10.4319/lo.1989.34.8.1545

    Article  CAS  Google Scholar 

  • Morgan CL, Odunton NA, Jones AT (1999) Synthesis of environmental impacts of deep seabed mining. Mar Georesour Geotechnol 17:307–356. doi:10.1080/106411999273666

    Article  CAS  Google Scholar 

  • Mudie JD, Grow JA, Bessey JS (1972) A near-bottom survey of lineated abyssal hills in the equatorial pacific. Mar Geophys Res 1:397–411. doi:10.1007/bf00286741

    Article  Google Scholar 

  • Mullineaux LS (1987) Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep Sea Res A Oceanogr Res Pap 34:165–184

    Article  Google Scholar 

  • Mullineaux LS (1988a) The role of settlement in structuring a hard-substratum community in the deep sea. J Exp Mar Biol Ecol 120:247–261

    Article  Google Scholar 

  • Mullineaux LS (1988b) Taxonomic notes on large agglutinated foraminifers encrusting manganese nodules, including the description of a new genus, Chondrodapis (Komokiacea). J For Res 18:46–53. doi:10.2113/gsjfr.18.1.46

    Google Scholar 

  • Mullineaux LS (1989) Vertical distributions of the epifauna on manganese nodules: Implications for settlement and feeding. Limnol Oceanogr 34:1247–1262

    Article  Google Scholar 

  • Nygren A (2014) Cryptic polychaete diversity: a review. Zool Scr 43:172–183. doi:10.1111/zsc.12044

    Article  Google Scholar 

  • Osborn KJ (2009) Relationships within the Munnopsidae (Crustacea, Isopoda, Asellota) based on three genes. Zool Scr 38:617–635

    Article  Google Scholar 

  • Paterson GLJ, Wilson GDF, Cosson N, Lamont PA (1998) Hessler and Jumars (1974) revisited: abyssal polychaete assemblages from the Atlantic and Pacific. Deep-Sea Res II Top Stud Oceanogr 45:225–252

    Article  Google Scholar 

  • Piper DZ, Blueford JR (1982) Distribution, mineralogy, and texture of manganese nodules and their relation to sedimentation at DOMES Site A in the equatorial North Pacific. Deep Sea Res A Oceanogr Res Pap 29:927–951. doi:10.1016/0198-0149(82)90019-X

    Article  CAS  Google Scholar 

  • Piper DZ, Cook HE, Gardner JV (1979a) Lithic and acoustic stratigraphy of the equatorial north Pacific: DOMES sites A, B, and C. In: Bischoff JL, Piper DZ (eds) Marine geology and oceanography of the Pacific manganese nodule province. Plenum (Springer US), New York, pp 309–348

    Chapter  Google Scholar 

  • Piper DZ, Leong K, Cannon WF (1979b) Manganese nodule and surface sediment compositions: DOMES sites A, B, and C. In: Bischoff JL, Piper DZ (eds) Marine geology and oceanography of the Pacific manganese nodule province. Plenum (Springer US), New York, pp 437–474

    Chapter  Google Scholar 

  • Preston FW (1962a) The canonical distribution of commonness and rarity: part I. Ecology 43:185–215. doi:10.2307/1931976

    Article  Google Scholar 

  • Preston FW (1962b) The canonical distribution of commonness and rarity: Part II. Ecology 43:410–432. doi:10.2307/1933371

    Article  Google Scholar 

  • Quinterno P, Theyer F (1979) Biostratigraphy of the equatorial north Pacific: DOMES sites A, B, and C. In: Bischoff JL, Piper DZ (eds) Marine Geology and oceanography of the Pacific manganese nodule province. Plenum (Springer US), New York, pp 349–364

    Chapter  Google Scholar 

  • Riehl T, Wilson GDF, Malyutina MV (2014) Urstylidae – a new family of abyssal isopods (Crustacea: Asellota) and its phylogenetic implications. Zool J Linn Soc 170:245–296. doi:10.1111/zoj.12104

    Article  Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282

    Article  Google Scholar 

  • Smith KL, Ruhl HA, Kahru M, Huffard CL, Sherman AD (2013) Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast. Pac Ocean Proc Natl Acad Sci 110:19838–19841. doi:10.1073/pnas.1315447110

    Article  CAS  Google Scholar 

  • Spiess FN, Weydert M (1987) Operational aspects, geology and physical effects of dredging. In: Spiess FN, Hessler RR, Wilson GDF, Weydert M (eds) Environmental effects of deep-sea dredging (final report to the national oceanic and atmospheric administration on contract NA83-SAC-00659), vol SIO Reference 87-5. Scripps Institution of Oceanography, La Jolla, pp 1–23

    Google Scholar 

  • Spiess FN, Hessler R, Wilson G, Weydert M, Rude P (1984) ECHO I cruise report vol 84-3. Scripps Institution of Oceanography, La Jolla. doi:10.13140/RG.2.1.4131.0242

    Google Scholar 

  • Sugihara G (1980) Minimal community structure: an explanation of species abundance patterns. Am Nat 116:770–787

    Article  Google Scholar 

  • Thiel H (1983) Meiobenthos and nanobenthos of the deep sea. In: Rowe GT (ed) The sea, vol 8. Wiley, New York, pp 167–230

  • Thistle D, Wilson GDF (1987) A hydrodynamically modified, abyssal isopod fauna. Deep-Sea Res 34:73–87. doi:10.1016/0198-0149(87)90123-3

    Article  Google Scholar 

  • Thistle D, Wilson GDF (1996) Is the HEBBLE isopod fauna hydrodynamically modified? A second test. Deep-Sea Res Part A Oceanogr Res Pap 43:545–554

    Article  Google Scholar 

  • Wilson GDF (1983) Systematics of a species complex in the deep-sea genus Eurycope, with a revision of six previously described species (Crustacea, Isopoda, Eurycopidae). Bull Scripps Inst Oceanogr 25:1–64

    Google Scholar 

  • Wilson GDF (1987a) Crustacean communities of the manganese nodule province. Scripps Institution of Oceanography, La Jolla. doi:10.13140/RG.2.1.4645.0729

    Google Scholar 

  • Wilson GDF (1987b) Differences in dispersal and speciation between deep-sea tanaids and isopods (Crustacea). Am Zool 23:140A

    Google Scholar 

  • Wilson GDF (1989) A systematic revision of the deep-sea subfamily Lipomerinae of the isopod crustacean family Munnopsidae. Bull Scripps Inst Oceanogr 27:1–138

  • Wilson GDF (1990a) Manganese nodule mining impact studies: RUM 3 -- R/V New Horizon Cruise “QUAGMIRE II”: 23 April - 17 May 1990. Post Cruise Rep SIO Ref Ser 90:1–43

    Google Scholar 

  • Wilson GDF (1990b) Biological evaluation of a preservational reserve area “BEPRA I”; cruise report and interim report on laboratory analysis. An oceanographic cruise from Puntarenas, Costa Rica to Honolulu, Hawaii on the R/V Moana Wave (University Of Hawaii) during 22 September To 14 October, 1989 SIO Ref Ser 90:1–34

  • Wilson GDF (1990c) The biological impact of deep ocean manganese nodule mining - a review of current programs and future directions. Report on a Workshop held on July 6-7, 1989 at the Scripps Institution of Oceanography SIO Ref Ser 90:1–73. doi:10.13140/RG.2.1.2417.5521

  • Wilson GDF (1991) Functional morphology and evolution of isopod genitalia. In: Bauer RT, Martin JW (eds) Crustacean sexual biology. Columbia University Press, New York, pp 228–245

    Google Scholar 

  • Wilson GDF (1992) Biological evaluation of a preservational reserve area; faunal data and comparative analysis. Australian Museum, Sydney. doi:10.13140/RG.2.1.2416.8484

  • Wilson GDF, Hessler RR (1987) The effects of manganese nodule test mining on the benthic fauna in the North equatorial pacific. In: Spiess FN, Hessler RR, Wilson GDF, Weydert M (eds) Environmental effects of deep-sea dredging. Final report to the national oceanic and atmospheric administration on contract NA83-SAC-00659, vol SIO Reference 87–5. SIO Reference, vol 87. Scripps Institution of Oceanography, La Jolla, pp 24–86. doi:10.13140/RG.2.1.1024.2080, appendices A-H

    Google Scholar 

  • Woolley SNC et al (2016) Deep-sea diversity patterns are shaped by energy availability. Nature 533:393–396. doi:10.1038/nature17937

    Article  CAS  PubMed  Google Scholar 

  • Young CM (2003) Reproduction, development and life history traits. In: Tyler PA (ed) Ecosystems of the deep oceans. Ecosystems of the world, vol 28. Elsevier, Amsterdam, pp 381–426

    Google Scholar 

Download references

Acknowledgements

Peter A. Jumars, Robert R. Hessler and Fred N. Spiess directed the initial NOAA programs and provided much of the intellectual overview to the ongoing programs. The captains, chief engineers, crews, and scientific parties of the research vessels Melville, Oceanographer, New Horizon and Moana Wave tirelessly provided their expertise to collect the samples on which this research is based. Taxonomic expertise for the macrofauna was provided by Jurgen Sieg, Kristian Fauchald, Kirk Fitzhugh, Timothy Ragen, and Elana Varnum. Susan Garner and coworkers in my Scripps lab, and Liko Self and coworkers in the Jumars lab at the University of Washington were invaluable in sorting the samples and organizing the large datasets that resulted from the field programs. George Sugihara (SIO) provided the original Fortran of the lognormal estimation algorithm that I extended with a bootstrap estimator. Eugene D. Gallagher (University of Massachusetts, Boston) provided the corrected Fortran NEWNESS program and advised on various analytical issues. I am grateful to Dwight Trueblood, who found Jumars (1980) in his NOAA office files. This research was funded by NOAA contracts 03-78-B01-17, 83-SAC-00659, NA-84-ABH-0300, 40-AANC-701124, 50-DGNC-8-00113, 50-DSNC-9-00108. Two anonymous referees kindly provided helpful advice, who requested clarifications on the methods employed, productivity estimates and probable disperal modes. I am grateful to these people and institutions for their contributions to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. F. Wilson.

Additional information

Communicated by S. S. M. Kaiser

Electronic supplementary material

Below are links to the electronic supplementary material.

ESM 1

(XLS 75 kb)

ESM 2

(XLS 106 kb)

ESM 3

(XLS 63 kb)

ESM 4

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, G.D.F. Macrofauna abundance, species diversity and turnover at three sites in the Clipperton-Clarion Fracture Zone. Mar Biodiv 47, 323–347 (2017). https://doi.org/10.1007/s12526-016-0609-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0609-8

Keywords

Navigation