Skip to main content

Advertisement

Log in

Mapping the Potential Regions for the Construction of Cement Concrete Check Dams Using Remote Sensing and GIS

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Check dams are widely used soil and water conservation structures throughout the world, constructed either for recharging groundwater or for retaining water for domestic and irrigation use. However, identifying the prospective zones for constructing check dams remains challenging. This study aimed to develop detailed geographic information system (GIS) procedures for suitable locations for check dams. The various rules given in the literature were reviewed and a set of rules were customized for selecting suitable sites for constructing the check dams, considering their practicality and purpose. The study highlighted the shortcoming observed in the Integrated Mission for Sustainable Development (IMSD) rules for identifying suitable locations for constructing the check dams. Shortcomings in routine use of Digital Elevation Model (DEM) sources are discussed. Stream network map was prepared by corroborating the streams from various sources, such as SRTM DEM, Google Earth Images, and SLUSI (Soil and Land Use Survey of India) analog maps. Detailed GIS procedures were developed for zoning the prospective locations for constructing check dams. The developed GIS procedures were implemented to map the potential zones for constructing cement concrete check dams in the Noyyal river basin, India. This work will be helpful for the hydrology community to locate the check dams in watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The source of data has been clearly mentioned in the study area section of the paper. The results of the work are available with the first author.

Code Availability

GIS software available in public domain.

References

  • Abili, H. Z. (2021). Comparison of vertical accuracy of open-source global digital elevation models: A case study of Adama City, Ethiopia. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(4), 1731–1744. https://doi.org/10.17762/turcomat.v12i4.1437

    Article  Google Scholar 

  • Adham, A., Riksen, M., Ouessar, M., & Ritsema, C. (2016). Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. International Journal of Soil and Water Conservation Research, 4(2), 108–120. https://doi.org/10.1016/j.iswcr.2016.03.001

    Article  Google Scholar 

  • Al-marsumi, K. J., & Al-shamma, A. M. (2017). Selection of suitable sites for water harvesting structures in a flood prone area using remote sensing and GIS - Case study. J Environ Earth Sci, 7 (4), 91-100.

    Google Scholar 

  • Al-Shammari, M. M. A., Al-Shamma, A. M., Al Maliki, A., Hussain, H. M., Yaseen, Z. M., & Armanuos, A. M. (2021). Integrated water harvesting and aquifer recharge evaluation methodology based on remote sensing and geographical information system: Case study in Iraq. Natural Resources Research, 30(3), 2119–2143. https://doi.org/10.1007/s11053-021-09835-3

    Article  Google Scholar 

  • Anand, B., Karunanidhi, D., & Subramani, T. (2020). Promoting artificial recharge to enhance groundwater potential in the lower Bhavani River basin of South India using geospatial techniques. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-09019-1

    Article  Google Scholar 

  • Arya, S., Subramani, T., & Karunanidhi, D. (2020). Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-020-8832-9

    Article  Google Scholar 

  • Biswas, S. (2012). Estimation of soil erosion using remote sensing and GIS and prioritization of catchments. International Journal of Emerging Technology and Advanced Engineering, 2(7), 124–128.

    Google Scholar 

  • Central Ground Water Board. (2000). Guide on Artificial Recharge to Groundwater. Ministry of Water Resources, Retrieved December 7, 2021, from http://cgwb.gov.in/documents/ArtificialRecharge-Guide.pdf

  • Drisya, J., & Kumar, S. D. (2016). Comparison of digitally delineated stream networks from different spaceborne digital elevation models: A case study based on two watersheds in South India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-016-2726-x

    Article  Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Gavit, B. K., Purohit, R. C., Singh, P. K., Kothari, M., & Jain, H. K., et al. (2018). Rainwater harvesting structure site suitability using remote sensing and GIS. In V. P. Singh (Ed.), Hydrologic Modeling (Vol. 81, pp. 331–341). Water Science and Technology Library. https://doi.org/10.1007/978-981-10-5801-1_23

    Chapter  Google Scholar 

  • Ghosh, P. K., Bandyopadhyay, S., & Jana, N. C. (2016). Mapping of groundwater potential zones in hard rock terrain using geoinformatics: A case of Kumari watershed in western part of West Bengal. Modeling Earth Systems and Environment, 2(1), 1–12. https://doi.org/10.1007/s40808-015-0044-z

    Article  Google Scholar 

  • Gotardo, R., Piazza, A., Torres, G., Kaufmann, E. V., & Pinheiro, A. (2016). Soil loss vulnerability in an agricultural catchment in the Atlantic forest biome in Southern Brazil. AIMS Geosciences, 2(4), 345–365. https://doi.org/10.3934/geosci.2016.4.345

    Article  Google Scholar 

  • Government of Tamil Nadu. (2018). Guidelines for the execution of checkdam. Rural Development and Panchayat Raj, G.O. (MS). No. 6. Retrieved from https://cms.tn.gov.in/sites/default/files/go/rural_e_ms_6_2018.pdf

  • Ibrahim-Bathis, K., & Ahmed, S. A. (2014). Identification of suitable sites for water harvesting in the water scare rural watershed by the integrated use of remote sensing and GIS. In: International Symposium on Integrated Water Resources Management (IWRM-2014), February 19–21, 2014, CWRDM, Kozhikode, Kerala, India.

  • Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2015). Evaluation of multiple environmental factors for site-specific groundwater recharge structures in the Vaigai river upper basin, Tamil Nadu, India, using GIS-based weighted overlay analysis. Environmental Earth Sciences, 74(5), 4355–4380. https://doi.org/10.1007/s12665-015-4384-9

    Article  Google Scholar 

  • Kolekar, S. S., Mishra, A., Choudhari, P., & Choudhari, N. R. (2021). Identification of specific areas for water conservation measures using Geoinformatics approach. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-021-06721-3

    Article  Google Scholar 

  • Kumar, S., Kumar, M., Chandola, V. K., Kumar, V., Saini, R. K., Pant, N., Kumari, N., Srivastava, A., Singh, S., Singh, R., Krishan, G., Induwar, S. P.; Kumar, S., Yadav, B. K., Maurya, N. S., & Chaudhary, A. (2021). Groundwater quality issues and challenges for drinking and irrigation uses in central Ganga basin dominated with rice-wheat cropping system. Water, 13(17). https://doi.org/10.3390/w13172344

  • Kumari, A., & Singh, A. (2021). Delineation of groundwater potential zone using analytical hierarchy process. Journal of the Geological Society of India, 97(8), 935–942. https://doi.org/10.1007/s12594-021-1794-z

    Article  Google Scholar 

  • Mahmoud, S. H., & Alazba, A. A. (2015). Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing. PLoS ONE. https://doi.org/10.1371/journal.pone.0125805

    Article  Google Scholar 

  • Mogaji, K. A., Lim, H. S., & Abdullah, K. (2014). Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arabian Journal of Geosciences, 8(5), 3235–3258. https://doi.org/10.1007/s12517-014-1391-1

    Article  Google Scholar 

  • Mugo, G. M., & Odera, P. A. (2019). Site selection for rainwater harvesting structures in Kiambu County-Kenya. Egyptian Journal of Remote Sensing and Space Science, 22(2), 155–164. https://doi.org/10.1016/j.ejrs.2018.05.003

    Article  Google Scholar 

  • Naseef, T. A. U., & Thomas, R. (2016). Identification of suitable sites for water harvesting structures in Kecheri river basin. Procedia Technology, 24, 7–14. https://doi.org/10.1016/j.protcy.2016.05.003

    Article  Google Scholar 

  • Nwacholundu, U. V., Izuchukwu, I. J., Ebele, E. J., Onyedika, E. J., & Chinagorom, I. E. (2021). Generating and analyzing terrain characteristics from shuttle radar topographic mission (SRTM), DEM. World Journal of Advanced Research and Reviews, 10(3), 198–206. https://doi.org/10.30574/wjarr.2021.10.3.0272

    Article  Google Scholar 

  • Nyssen, J., Veyret-Picot, M., Poesen, J., Moeyersons, J., Haile, M., Deckers, J., & Govers, G. (2006). The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use and Management, 20(1), 55–64. https://doi.org/10.1111/j.1475-2743.2004.tb00337.x

    Article  Google Scholar 

  • Patel, D., Samal, D. R., Prieto, C., & Eslamian, S. (2021). Application of RS and GIS for locating rainwater harvesting structure systems. In Handbook of Water Harvesting and Conservation. https://doi.org/10.1002/9781119478911.ch9

    Article  Google Scholar 

  • Rahmati, O., Kalantari, Z., Samadi, M., Uuemaa, E., Moghaddam, D. D., Nalivan, O. A., Destouni, G., & Bui, D. T. (2019). GIS-based site selection for check dams in watersheds: Considering geomorphometric and topo-hydrological factors. Sustainability (Switzerland). https://doi.org/10.3390/su11205639

    Article  Google Scholar 

  • Ramakrishnan, D., Bandyopadhyay, A., & Kusuma, K. N. (2009). SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi river basin India. Journal of Earth System Science, 118(4), 355–368. https://doi.org/10.1007/s12040-009-0034-5

    Article  Google Scholar 

  • Saha, A., Patil, M., Karwariya, S., Pingale, S. M., Azmi, S., Goyal, V. C., & Rathore, D. S. (2018). Identification of potential sites for water harvesting structures using geospatial techniques and multi-criteria decision analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(5), 329–334. https://doi.org/10.5194/isprs-archives-XLII-5-329-2018

    Article  Google Scholar 

  • Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115–124. https://doi.org/10.1016/j.gsf.2015.03.002

    Article  Google Scholar 

  • Shashikumar, B. N., Garg, V., & Nikam, B. R. (2018). Analytical hierarchy process for identification of suitable water harvesting site in geospatial environment. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-annals-IV-5-189-2018

  • Singh, J. P., Singh, D., & Litoria, P. K. (2009). Selection of suitable sites for water harvesting structures in Soankhad watershed, Punjab using remote sensing and geographical information system (RS & GIS) approach - A case study. Journal of the Indian Society of Remote Sensing, 37(1), 21–35. https://doi.org/10.1007/s12524-009-0009-7

    Article  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2016). Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. Journal of Cleaner Production, 142(4), 1436–1456. https://doi.org/10.1016/j.jclepro.2016.11.163

    Article  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2020). Planning rainwater conservation measures using geospatial and multi-criteria decision making tools. Environmental Science and Pollution Research, 28(2), 1734–1751.

    Article  Google Scholar 

  • Srinivasan, V., Kumar, D. S., Chinnasamy, P., Sulagna, S., Sakthivel, D., Paramasivam, P., & Lele, S. (2014). Water management in the Noyyal River basin: A situation analysis. Environment and Development Discussion Paper No.2. Bengaluru: Ashoka Trust for Research in Ecology and the Environment. Retrieved from https://www.researchgate.net/publication/267574419_Water_Management_in_the_Noyyal_River_Basin_A_Situation_Analysis/citations

  • Su, Y., Guo, Q., Ma, Q., & Li, W. (2015). SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. Remote Sensing, 7(9), 11202–11225.

    Article  Google Scholar 

  • Toosi, A. S., Tousi, E. G., Ghassemi, S. A., Cheshomi, A., & Alaghmand, S. (2020). A multi-criteria decision analysis approach towards efficient rainwater harvesting. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.124501

    Article  Google Scholar 

  • Wu, R. S., Molina, G. L. L., & Hussain, F. (2018). Optimal sites identification for rainwater harvesting in northeastern guatemala by analytical hierarchy process. Water Resources Management, 32(12), 4139–4153. https://doi.org/10.1007/s11269-018-2050-1

    Article  Google Scholar 

  • Zende, A. M., & Atal, K. R. (2015). Identification of rainwater harvesting structure for Yerala river using remote sensing and GIS. E-proceedings of the 36th IAHR world congress. The Hague, the Netherlands. https://doi.org/10.1340/RG.2.1.2935.6642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Material preparation, data collection and analysis were performed by SSKK, RV, BK and PS. The first draft of the manuscript was written by SSKK and RV. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. K. Shaheemath Suhara.

Ethics declarations

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

Not applicable.

Consent for Publication

Necessary permission has been obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhara, K.K.S., Ravikumar, V., Kannan, B. et al. Mapping the Potential Regions for the Construction of Cement Concrete Check Dams Using Remote Sensing and GIS. J Indian Soc Remote Sens 50, 2193–2208 (2022). https://doi.org/10.1007/s12524-022-01591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01591-y

Keywords

Navigation