Skip to main content

Advertisement

Log in

A Spatio-Temporal Assessment and Prediction of Surface Urban Heat Island Intensity Using Multiple Linear Regression Techniques Over Ahmedabad City, Gujarat

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The present study intends to understand the variability in land surface temperature and urban heat island over Ahmedabad city, Gujarat, from 2003 to 2018 using MODIS thermal data. The spatio-temporal variability of land surface temperature dynamics is understood by pixel to pixel linear regression analysis along with Mann–Kendall and Sen's slope estimator tests. A Gaussian fitting technique is employed to estimate the surface urban heat island (SUHI) signature with respect to the surrounding rural area. An overall increase in the surface urban heat island magnitude is profoundly visible during the winter season. The spatial extent of SUHI shows a uniform distribution of urban heat inside the city and its accumulation within a high dense central urban area in both summer and winter seasons. A multiple linear regression method is used to predict the SUHI magnitude in the next 16 years, i.e. in 2034, based on enhanced vegetation index, white sky albedo, and evapotranspiration as predicting variables considering two different scenarios presuming the present rate of change of predicting variables as first scenario and a double changing rate as compared to present rate in the second scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmedabad Municipal Corporation. (2013). Ahmedabad heat action plan (pp. 1–24).

  • Akher, S. K., & Chattopadhyay, S. (2017). Impact of urbanization on land surface temperature—A case study of Kolkata New Town. The International Journal Of Engineering And Science (IJES), 6(1), 71–81.

    Article  Google Scholar 

  • Anniballe, R., & Bonafoni, S. (2015). A Stable Gaussian fitting procedure for the parameterization of remote sensed thermal images. Algorithms, 8, 82–91.

    Article  Google Scholar 

  • Anniballe, R., Bonafoni, S., & Pichierri, M. (2014). Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sensing of Environment, 150, 163–171.

    Article  Google Scholar 

  • Araghi, A., Mousavi Baygi, M., Adamowski, J., Malard, J., Nalley, D., & Hasheminia, S. M. (2015). Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Atmospheric Research, 155, 52–72.

    Article  Google Scholar 

  • Bapuji Rao, B., Santhibhushan Chowdary, P., Sandeep, V. M., Rao, V. U. M., & Venkateswarlu, B. (2014). Rising minimum temperature trends over India in recent decades: Implications for agricultural production. Global and Planetary Change, 117, 1–8.

    Article  Google Scholar 

  • Borbora, J., & Das, A. K. (2014). Summertime urban heat island study for Guwahati City, India. Sustainable Cities and Society, 11, 61–66.

    Article  Google Scholar 

  • Chakraborty, S. D., Kant, Y., & Mitra, D. (2015). Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. Journal of Environmental Management, 148, 143–152.

    Article  Google Scholar 

  • Clinton, N., & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment, 134, 294–304.

    Article  Google Scholar 

  • Dousset, B., Gourmelon, F., Laaidi, K., Zeghnoun, A., Giraudet, E., Bretin, P., et al. (2011). Satellite monitoring of summer heat waves in the Paris metropolitan area. International Journal of Climatology, 31(2), 313–323.

    Article  Google Scholar 

  • Faris, A. A., & Reddy, Y. S. (2010). Estimation of Urban heat island using landsat ETM + imagery at Chennai City—A case study. International Journal of Earth Sciences and Engineering, 03(03), 332–340.

    Google Scholar 

  • Gohain, K. J., Mohammad, P., & Goswami, A. (2020). Assessing the impact of land use land cover changes on land surface temperature over Pune City, India. Quaternary International. https://doi.org/10.1016/j.quaint.2020.04.052.

    Article  Google Scholar 

  • Goswami, A., Mohammad, P., & Sattar, A. (2016). A temporal study of urban heat island (UHI)—A evaluation of Ahmedabad City, Gujarat. In: International conference on climate change mitigation and technologies for adaptation, Shillong (pp. 63–68).

  • Goswami, J., Roy, S., & Sudhakar, S. (2013). A novel approach in identification of urban hot spot using geospatial technology: A case study in Kamrup metro district of Assam. International Journal of Geosciences, 4, 898–903.

    Article  Google Scholar 

  • Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513.

    Article  Google Scholar 

  • Jin, M. S., Kessomkiat, W., & Pereira, G. (2011). Satellite-observed urbanization characters in Shanghai, China: Aerosols, urban heat island effect, and land-atmosphere interactions. Remote Sensing, 3(1), 83–99.

    Article  Google Scholar 

  • Joshi, R., Raval, H., Pathak, M., Prajapati, S., Patel, A., Singh, V., & Kalubarme, M. H. (2015). Urban heat island characterization and isotherm mapping using geo-informatics technology in Ahmedabad City, Gujarat State, India. International Journal of Geosciences, 6(3), 274–285.

    Article  Google Scholar 

  • Keeratikasikorn, C., & Bonafoni, S. (2018). Satellite images and gaussian parameterization for an extensive analysis of urban heat islands in Thailand. Remote Sensing, 10(5), 1–19.

    Article  Google Scholar 

  • Khan, A., & Chatterjee, S. (2016). Numerical simulation of urban heat island intensity under urban—suburban surface and reference site in Kolkata, India. Modeling Earth Systems and Environment, 2(2), 1–11.

    Article  Google Scholar 

  • Kikon, N., Singh, P., Singh, S. K., & Vyas, A. (2016). Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19–28.

    Article  Google Scholar 

  • Li, Y., Wang, L., Liu, M., Zhao, G., He, T., & Mao, Q. (2019). Associated determinants of surface urban heat islands across 1449 cities in China. Advances in Meteorology. https://doi.org/10.1155/2019/4892714.

    Article  Google Scholar 

  • Malik, S., Pal, S. C., Sattar, A., Singh, S. K., Das, B., Chakrabortty, R., & Mohammad, P. (2020). Trend of extreme rainfall events using suitable global circulation model to combat the water logging condition in Kolkata Metropolitan Area. Urban Climate, 32, 100599.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259.

    Article  Google Scholar 

  • Mathew, A., Chaudhary, R., & Gupta, N. (2015). Study of urban heat island effect on Ahmedabad city and its relationship with urbanization and vegetation parameters. International Journal of Computer & Mathematical Sciences, 4, 126–135.

    Google Scholar 

  • Mathew, A., Khandelwal, S., & Kaul, N. (2016a). Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh City, India. Sustainable Cities and Society, 26, 264–277.

    Article  Google Scholar 

  • Mathew, A., Khandelwal, S., & Kaul, N. (2017). Investigating spatial and seasonal variations of urban heat island effect over Jaipur City and its relationship with vegetation, urbanization and elevation parameters. Sustainable Cities and Society, 35, 157–177.

    Article  Google Scholar 

  • Mathew, A., Sreekumar, S., Khandelwal, S., Kaul, N., & Kumar, R. (2016b). Prediction of surface temperatures for the assessment of urban heat island effect over Ahmedabad City using linear time series model. Energy and Buildings, 128, 605–616.

    Article  Google Scholar 

  • Miles, V., & Esau, I. (2020). Surface urban heat islands in 57 cities across different climates in Northern Fennoscandia. Urban Climate, 31, 100575.

    Article  Google Scholar 

  • Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat island—Abilities and limitations. Building and Environment, 45(10), 2192–2201.

    Article  Google Scholar 

  • Mohammad, P., & Ajanta, G. (2020). Surface urban heat island variation over major Indian cities across different climatic zone. In EGU general assembly conference abstracts, held online 4–8 May, 2020: 22nd EGU General Assembly (p. 6444).

  • Mohammad, P., & Goswami, A. (2018). A remote sensing based evaluation of urban heat island and its spatial pattern over the city of Raipur, Chhattisgarh, India. In AGU fall meeting abstracts. Wasington: American Geophysical Union, Fall Meeting 2018, abstract #GH22A-10.

  • Mohammad, P., & Goswami, A. (2020). Temperature and precipitation trend over 139 major Indian cities: An assessment over a century. Modeling Earth Systems and Environment, 5(4), 1481–1493.

    Article  Google Scholar 

  • Mohammad, P., Goswami, A., & Bonafoni, S. (2019). The impact of the land cover dynamics on surface urban heat island variations in semi-arid cities: A case study in Ahmedabad city, India, using multi-sensor/source data. Sensors, 19(17), 3701.

    Article  Google Scholar 

  • Mohan, M. (2012). Urban heat island assessment for a tropical urban airshed in India. Atmospheric and Climate Sciences, 02(02), 127–138.

    Article  Google Scholar 

  • Mohan, M., Kandya, A., & Battiprolu, A. (2011). Urban heat island effect over national capital region of India: A study using the temperature trends. Journal of Environmental Protection, 02(04), 465–472.

    Article  Google Scholar 

  • Mohan, M., Yukihiro Kikegawa, B. R., Gurjar, S. B., & Kolli, N. R. (2013). Assessment of urban heat island effect for different land use-land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theoretical and Applied Climatology, 112(3–4), 647–658.

    Article  Google Scholar 

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24.

    Google Scholar 

  • Oke, T. R. (1988). The urban energy balance. Progress in Physical Geography, 12(4), 471–508.

    Article  Google Scholar 

  • Pandey, P., Kumar, D., Prakash, A., Masih, J., Singh, M., Kumar, S., et al. (2012). A study of urban heat island and its association with particulate matter during winter months over Delhi. Science of the Total Environment, 414, 494–507.

    Article  Google Scholar 

  • Peng, S., Feng, Z., Liao, H., Huang, B., Peng, S., & Zhou, T. (2019). Spatial-temporal pattern of, and driving forces for, urban heat island in China. Ecological Indicators, 96, 127–132.

    Article  Google Scholar 

  • Pichierri, M., Bonafoni, S., & Biondi, R. (2012). Satellite air temperature estimation for monitoring the canopy layer heat island of Milan. Remote Sensing of Environment, 127, 130–138.

    Article  Google Scholar 

  • Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90.

    Article  Google Scholar 

  • Radhakrishnan, K., Sivaraman, I., Jena, S. K., Sarkar, S., & Adhikari, S. (2017). A climate trend analysis of temperature and rainfall in India. Climate Change and Environmental Sustainability, 5(2), 146.

    Article  Google Scholar 

  • Rahman, A., & Kumar, Y. (2011). Urbanization and quality of urban environment using remote sensing and GIS techniques in East Delhi-India. Journal of Geographic Information System, 3, 62–84.

    Article  Google Scholar 

  • Raj, S., Paul, S. K., Chakraborty, A., & Kuttippurath, J. (2020). Anthropogenic forcing exacerbating the urban heat islands in India. Journal of Environmental Management, 257, 110006.

    Article  Google Scholar 

  • Ramachandra, Tv., & Kumar, U. (2010). Greater Bangalore: Emerging urban heat island. GIS Development, 14(1), 1–16.

    Google Scholar 

  • Ramamurthy, P., & Sangobanwo, M. (2016). Inter-annual variability in urban heat island intensity over 10 major cities in the United States. Sustainable Cities and Society, 26, 65–75.

    Article  Google Scholar 

  • Schwarz, N., Lautenbach, S., & Seppelt, R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 115(12), 3175–3186.

    Article  Google Scholar 

  • Sen, K. P. (1968). Estimates of the regression coefficient based on Kendall’ s Tau Pranab Kumar Sen. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Senay, G. B., Budde, M. E., & Verdin, J. P. (2011). Enhancing the simplified surface energy balance (SSEB) Approach for estimating landscape ET: Validation with the METRIC model. Agricultural Water Management, 98(4), 606–618.

    Article  Google Scholar 

  • Sharma, R., & Joshi, P. K. (2014). Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data—An anomaly based approach. Urban Climate, 9, 19–34.

    Article  Google Scholar 

  • Sheikh, M. A., Azad, C., Mukherjee, S., & Rina, K. (2017). An assessment of groundwater salinization in Haryana state in India using hydrochemical tools in association with GIS. Environmental Earth Sciences, 76(13), 1–13.

    Article  Google Scholar 

  • Singh, N., Sen, R., Vishwakarma, C. A., Asthana, H., & Mukherjee, S. (2016). Groundwater recharge influencing the arsenic enrichment in the Aquifer of West Bengal. International Journal of Advanced Geosciences, 4(2), 82.

    Article  Google Scholar 

  • Singh, P., Kikon, N., & Verma, P. (2017). Impact of Land use change and urbanization on urban heat island in Lucknow City, Central India. A remote sensing based estimate. Sustainable Cities and Society, 32, 100–114.

    Article  Google Scholar 

  • Singh, P., & Mukherjee, S. (2020). Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones. Journal of Hydrology, 582, 124459.

    Article  Google Scholar 

  • Singh, R. P., Singh, N., Shashtri, S., & Mukherjee, S. (2014). Utilisation of satellite data in identification of geomorphic landform and its role in arsenic release in groundwater. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II, 8, 29–35.

    Google Scholar 

  • Streutker, D. R. (2002). A remote sensing study of the urban heat island of Houston, Texas. International Journal of Remote Sensing, 23(13), 2595–2608.

    Article  Google Scholar 

  • Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85(3), 282–289.

    Article  Google Scholar 

  • Tan, J., Youfei Zheng, Xu., Tang, C. G., Li, L., Song, G., Zhen, X., et al. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.

    Article  Google Scholar 

  • Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. J. (2012). Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. International Journal of Climatology, 32(2), 214–224.

    Article  Google Scholar 

  • Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8(1), 34–48.

    Article  Google Scholar 

  • Veena, K., Parammasivam, K. M., & Venkatesh, T. N. (2020). Urban heat island studies: Current status in india and a comparison with the international studies. Journal of Earth System Science. https://doi.org/10.1007/s12040-020-1351-y.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.

    Article  Google Scholar 

  • Wan, Z. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 892–905.

    Article  Google Scholar 

  • Wan, Z. (2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36–45.

    Article  Google Scholar 

  • Wang, K., Wang, J., Wang, P., Sparrow, M., Yang, J., & Chen, H. (2007). Influences of urbanization on surface characteristics as derived from the moderate-resolution imaging spectroradiometer: A case study for the Beijing Metropolitan Area. Journal of Geophysical Research Atmospheres. https://doi.org/10.1029/2006JD007997.

    Article  Google Scholar 

  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344.

    Article  Google Scholar 

  • Wu, X., Wang, G., Yao, R., Wang, L., Yu, D., & Gui, X. (2019). Investigating surface urban heat islands in South America based on MODIS data from 2003–2016. Remote Sensing, 11(10), 1212.

    Article  Google Scholar 

  • Xian, G., & Crane, M. (2006). An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using landsat satellite data. Remote Sensing of Environment, 104(2), 147–156.

    Article  Google Scholar 

  • Yang, Q., Huang, X., & Li, J. (2017). Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China. Scientific Reports, 7(1), 1–11.

    Google Scholar 

  • Yang, Q., Huang, X., & Tang, Q. (2019). The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Science of the Total Environment, 655, 652–662.

    Article  Google Scholar 

  • Yao, R., Wang, L., Huang, X., Chen, J., Li, J., & Niu, Z. (2018). Less sensitive of urban surface to climate variability than rural in Northern China. Science of the Total Environment, 628–629, 650–660.

    Article  Google Scholar 

  • Yao, R., Wang, L., Huang, X., Niu, Z., Liu, F., & Wang, Q. (2017). Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 609, 742–754.

    Article  Google Scholar 

  • Yuanzheng, L. I., Lan, W., Liping, Z., Min, L. I. U., & Guosong, Z. (2019). Monitoring intra-annual spatiotemporal changes in urban heat islands in 1449 cities in China based on remote sensing. Chinese Geographical Science, 29, 905–916.

    Article  Google Scholar 

  • Yue, W., Liu, X., Zhou, Y., & Liu, Y. (2019). Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Science of the Total Environment, 671, 1036–1046.

    Article  Google Scholar 

  • Zhang, T., Peng, J., Liang, W., Yang, Y., & Liu, Y. (2016). Spatial-temporal patterns of water use efficiency and climate controls in China’s loess plateau during 2000–2010. Science of the Total Environment, 565, 105–122.

    Article  Google Scholar 

  • Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., et al. (2019). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 1–36.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Earth Sciences, Indian Institute of Technology, Roorkee, India, for providing necessary infrastructure facilities. The authors also acknowledge MHRD and DST NRDMS (Grant Number NRDMS/01/179/2015(C)), New Delhi, for providing the required financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajanta Goswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, P., Goswami, A. A Spatio-Temporal Assessment and Prediction of Surface Urban Heat Island Intensity Using Multiple Linear Regression Techniques Over Ahmedabad City, Gujarat. J Indian Soc Remote Sens 49, 1091–1108 (2021). https://doi.org/10.1007/s12524-020-01299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01299-x

Keywords

Navigation