Skip to main content
Log in

Water Column Effects on In Situ Spectral Signatures of Coral Species from Gujarat Coast, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Scleractinian corals represent the main functional group in a coral reef ecosystem. So far, very few studies have ever reported how an in situ coral spectra changes with increasing water column purely in a natural environment. This paper reports the results of a unique field experiment wherein water column effects were observed over time on in situ hyperspectral signatures (over a continuous spectral range 400–1350 nm) of three live coral species from Gujarat coast of India. In situ hyperspectral measurements were taken with Analytical Spectral Devices (ASD) FieldSpec3 spectroradiometer having full spectral range of 350–2500 nm and spectral resolution of 3 nm (at 700 nm) and 10 nm (at 1400, 2100 nm). Three coral species, Favia favus, Goniopora planulata and Turbinaria peltata, were selected as case representatives for this study. In exposed condition, all three corals exhibit brown mode of coral reflectance with characteristic triple peaks at 575, 600 and 650 nm. It is observed that water column attenuates the original signature of corals by enhancing the spectral magnitude in the visible region and in inverse fashion in the infrared region. The first derivative spectra clearly bring out the sensitivity of 840-nm channel towards water column. The water column height at which the triple peak pattern gets obscured varies for the three coral species. The spectral reflectance of coral as a bottom substrate continues to remain strong between 700–720 and 1050–1080 nm even in marginally submerged condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andréfouët, S., Hochberg, E. J., Chevillon, C., Muller-Karger, F. E., Brock, J. C., & Hu, C. (2005). Multi-scale remote sensing of coral reefs. In R. L. Miller, C. E. DelCastillo, & B. A. McKee (Eds.), Remote sensing of coastal aquatic environments: Technologies, techniques and applications (pp. 297–315). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Clark, C. D., Mumby, P. J., Chisholm, J. R. M., Jaubert, J., & Andréfouët, S. (2000). Spectral discrimination of coral mortality states following a severe bleaching event. International Journal of Remote Sensing, 21(11), 2321–2327.

    Article  Google Scholar 

  • Dekker, A. G., Brando, V. E., Anstee, J. M., Pinnel, N., Kutser, T., Hoogenboom, E. J., et al. (2001). Imaging spectrometry of water. In F. D. Van Der Meer & S. M. De Jong (Eds.), Imaging spectrometry: Basic principles and prospective applications (pp. 307–359). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dove, S. G., Hoegh-Guldberg, O., & Ranganathan, S. (2001). Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs, 19, 197–204.

    Article  Google Scholar 

  • Hedley, J. D., & Mumby, P. J. (2002). Biological and remote sensing perspectives of pigmentation in coral reef organisms. Advances in Marine Biology, 43, 277–317.

    Article  Google Scholar 

  • Hedley, J. D., Mumby, P. J., Joyce, K. E., & Phinn, S. R. (2004). Spectral unmixing of coral reef benthos under ideal conditions. Coral Reefs, 23, 60–73.

    Article  Google Scholar 

  • Hochberg, E. J., & Atkinson, M. J. (2000). Spectral discrimination of coral reef benthic communities. Coral Reefs, 19, 164–171.

    Article  Google Scholar 

  • Hochberg, E. J., & Atkinson, M. J. (2003). Capabilities of remote sensors to classify coral, algae and sand as pure and mixed spectra. Remote Sensing of Environment, 85, 174–189.

    Article  Google Scholar 

  • Hochberg, E. J., Atkinson, M. J., & Andréfouët, S. (2003). Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 85, 159–173.

    Article  Google Scholar 

  • Hochberg, E. J., Atkinson, M. J., Apprill, A., & Andréfouët, S. (2004). Spectral reflectance of coral. Coral Reefs, 23, 84–95.

    Article  Google Scholar 

  • Holden, H., & LeDrew, E. (1998). Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis and derivative spectroscopy. Remote Sensing of Environment, 65, 217–224.

    Article  Google Scholar 

  • Holden, H., & LeDrew, E. (1999). Spectral identification of coral reef features. International Journal of Remote Sensing, 20(13), 2545–2563.

    Article  Google Scholar 

  • Holden, H., & LeDrew, E. (2001). Effects of the water column on hyperspectral reflectance of submerged coral reef features. Bulletin of Marine Science, 69(2), 685–699.

    Google Scholar 

  • Holden, H., & LeDrew, E. (2002). Measuring and modeling water column effects on hyperspectral reflectance in a coral reef environment. Remote Sensing of Environment, 81, 300–308.

    Article  Google Scholar 

  • Huen, W., & Zhang, Y. (2012). Spectral discrimination of coral species and habitats in Hong Kong. In Proceedings of the 12th international coral reef symposium. Cairns, Australia, 9–13 July, 2012.

  • Joyce, K. E., & Phinn, S. R. (2002). Bi-directional reflectance of corals. International Journal of Remote Sensing, 23(2), 389–394.

    Article  Google Scholar 

  • Joyce, K. E., & Phinn, S. R. (2003). Hyperspectral analysis of chlorophyll content and photosynthetic capacity of coral reef substrates. Limnology and Oceanography, 48(1, part 2), 489–496.

    Article  Google Scholar 

  • Kutser, T., Dekker, A. G., & Skirving, W. (2003). Modeling spectral discrimination of Great Barrier Reef benthic communities by remote sensing instruments. Limnology and Oceanography, 48(1, part 2), 497–510.

    Article  Google Scholar 

  • Leiper, I., Phinn, S. R., & Dekker, A. G. (2012). Spectral reflectance of coral reef benthos and substrate assemblages on Heron Reef, Australia. International Journal of Remote Sensing, 33(11–12), 3946–3965.

    Article  Google Scholar 

  • Levy, O., Dubinsky, Z., & Achituv, Y. (2003). Photobehavior of stony corals: Responses to light spectra and intensity. The Journal of Experimental Biology, 206, 4041–4049.

    Article  Google Scholar 

  • Lubin, D., Li, W., Dustan, P., Mazel, C. H., & Stamnes, K. (2001). Spectral signatures of coral reefs: Features from space. Remote Sensing of Environment, 75, 127–137.

    Article  Google Scholar 

  • Maritorena, S. (1996). Remote sensing of the water attenuation in coral reefs: A case study in French Polynesia. International Journal of Remote Sensing, 17(1), 155–166.

    Article  Google Scholar 

  • Maritorena, S., Morel, A., & Gentili, B. (1994). Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnology and Oceanography, 39(7), 1689–1703.

    Article  Google Scholar 

  • Mazel, C. H. (1995). Spectral measurements of fluorescence emission in Caribbean cnidarians. Marine Ecology Progress Series, 120, 185–191.

    Article  Google Scholar 

  • Myers, M. R., Hardy, J. T., Mazel, C. H., & Dustan, P. (1999). Optical spectra and pigmentation of Caribbean reef corals and macroalgae. Coral Reefs, 18, 179–186.

    Article  Google Scholar 

  • Navalgund, R. R., Ajai, Bahuguna A., Ray, Chaudhury N., Bhattji, N. S., Madhupriya, N., Sharma, S., et al. (2010). Coral Reef Atlas of The World Vol. 1 Central Indian Ocean (p. 282). Ahmedabad: Space Applications Centre, (ISRO).

    Google Scholar 

  • Patel, M. I. (1978). Generic diversity of scleractinians around Poshetra Point, Gulf of Kutch. Indian Journal of Marine Sciences, 7, 30–32.

    Google Scholar 

  • Purkis, S. J. (2005). A “reef-up” approach to classifying coral habitats from IKONOS imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1375–1390.

    Article  Google Scholar 

  • Ralph, P. J., Larkum, A. W. D., & Kuhl, M. (2007). Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Marine Biology, 152, 395–404.

    Article  Google Scholar 

  • Rundquist, D., Gitelson, A., Lawson, M., Keydan, G., Leavitt, B., Perk, R., et al. (2009). Proximal sensing of coral features: Spectral characterization of Siderastrea sidereal. GIScience and Remote Sensing, 46(2), 139–159.

    Article  Google Scholar 

  • Stambler, N. (2011). Zooxanthellae: The yellow symbionts inside animals. In Z. Dubinsky & N. Stambler (Eds.), Coral reefs: An ecosystem in transition (pp. 87–106). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Torres-Pèrez, J. L., Guild, L. S., & Armstrong, R. A. (2012). Hyperspectral distinction of two Caribbean shallow water corals based on their pigments and corresponding reflectance. Remote Sensing, 4, 3813–3832.

    Article  Google Scholar 

  • Van Der Meer, F. D. (2001). Basic physics of spectrometry. In F. D. Van Der Meer & S. M. De Jong (Eds.), Imaging Spectrometry: Basic principles and prospective applications (pp. 6–16). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Venkataraman, K., & Satyanarayana, Ch. (2012). Coral identification manual (pp. 7–9). Kolkata: Zoological Survey of India.

    Google Scholar 

  • Venkataraman, K., Satyanarayana, Ch., Alfred, J. R. B., & Wolstenholme, J. (2003). Handbook on hard corals of India (p. 266). Kolkata: Zoological Survey of India.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, Space Applications Centre (SAC), ISRO, and Deputy Director, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area (EPSA), SAC, for providing an opportunity to carry out this study under PRACRITI-Phase-II programme. The authors are thankful to Dr. Ch. Satyanarayana, Chief Coral Taxonomist from Zoological Survey of India, Kolkata, for authenticating the sampled coral species identification. The authors express their sincere thanks to the supporting team from Gujarat Ecological and Environment Education Research (GEER) Foundation, Gandhinagar, in realizing the in situ hyperspectral measurements. The authors thank Dr. Prakash Chauhan, Group Director, Biological and Planetary Sciences Group (BPSG), at SAC for his encouragement towards the study. The authors thank Dr. R. P. Singh, Head, Environment and Hydrology Division, SAC, for his valuable suggestions towards conducting the in situ experiment and manuscript preparation. The authors thank Prabakaran Ch., former Research Fellow at SAC, for his support in field data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Ray Chaudhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray Chaudhury, N., Gujrati, A. & Murthy, T.V.R. Water Column Effects on In Situ Spectral Signatures of Coral Species from Gujarat Coast, India. J Indian Soc Remote Sens 47, 1577–1586 (2019). https://doi.org/10.1007/s12524-019-00992-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00992-w

Keywords

Navigation