Skip to main content

Advertisement

Log in

Spatial Variability of Some Chemical and Physical Soil Properties in Bandipora District of Lesser Himalayas

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil is a suitable place for vegetation and plant growth. When this valuable resource is not preserved, shortage of food, erosion and damage of natural resources will be respected. Soil is a heterogeneous, diverse and dynamic system and investigation of its temporal and spatial changes is essential. In this paper spatial variability of some chemical and physical soil were investigated. Three hundred fifty eight soil samples were collected by systematic sampling strategy at 20 cm depth on a regular grid spacing of 500 × 500 m2 under different vegetation cover and processed for analysis in the laboratory. Soil chemical and physical parameters including pH, electrical conductivity, organic carbon, available phosphorus, available nitrogen, available potassium, sulphur, calcium, magnesium and sodium were measured. After data normalization, classical statistical analysis was used to describe soil properties and geo-statistical analysis was used to illustrate spatial correlation of soil characteristics. By using interpolating techniques, spatial distribution of these properties were prepared. Results indicated that calcium and phosphorus had strong and weak spatial dependence, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afshar, H., Salehi, M. H., Mohammadi, J., & Mehnatkesh, A. (2009). Spatial variability of soil properties and irrigated wheat yield in quantitative suitability map, a case study: Share e Kian Area, Chaharmahaleva Bakhtiari province. Journal of Water and Soil, 23(1), 161–172.

    Google Scholar 

  • Anderson, C. J., Mitsch, W. J., & Nairn, R. W. (2005). Temporal and spatial development of surface soil conditions at two created riverine marshes. Journal of Environmental Quality, 34, 2072–2081.

    Article  Google Scholar 

  • Ayoubi, S., & Khormali, F. (2009). Spatial variability of soil surface nutrients using principal component analysis and geostatistics: A case study of Appaipally village, Andhra Pradesh, India. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, Isfahan University of Technology, 12(46), 609–622.

    Google Scholar 

  • Burke, A. (2001). Classification and ordination of plant communities of the Nauklaft Mountain, Namibia. Journal of Vegetation Science, 12, 53–60.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Turco, D. L., Karlen, R. F., & Konopka, A. E. (1994). Field scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Cheng, X., An, S., Chen, J., Li, B., Liu, Y., & Liu, S. (2007). Spatial relationships among species, above-ground biomass, N, and P in degraded grasslands in Ordos Plateau, northwestern China. Journal of Arid Environments, 68, 652–667.

    Article  Google Scholar 

  • Chesnin, L., & Yien, C. H. (1951). Turbidimetric determination of available sulphur. Proceedings of Soil Science Society of America, 15, 149–151.

    Article  Google Scholar 

  • Covelo, F., Rodríguez, A., & Gallardo, A. (2008). Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercusrobur population. Plant and Soil, 311, 109–119.

    Article  Google Scholar 

  • Davatgar, N. (1998). Investigation spatial variability of some soil characteristics. M.Sc. Thesis, Faculty of agriculture, Tabriz University, pp. 108.

  • Davatgar, N., Neyshabouri, M. R., & Moghaddam, M. R. (2001). The analysis of information obtained from soil variables map by use of semivariogram models. Iranian Journal of Agricultural Sciences, 31(4), 725–735.

    Google Scholar 

  • Du Feng, L. Z., XuXuexuan, Z. X., & Shan, L. (2008). Spatial heterogeneity of soil nutrients and aboveground biomass in abandoned old-fields of Loess Hilly region in Northern Shaanxi, China. Acta Ecologica Sinica, 28(1), 13–22.

    Article  Google Scholar 

  • Emadi, M., Baghernejad, M., Emadi, M., & Maftoun, M. (2008). Assessment of some soil properties by spatial variability in saline and sodic soils in Arsanjan plain, southern Iran. Pakistan Journal of Biological Sciences, 11(2), 238–243.

    Article  Google Scholar 

  • Etema, C., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution, 17, 177–183.

    Article  Google Scholar 

  • Fennessy, M. S., & Mitsch, W. J. (2001). Effects of hydrology and spatial patterns of soil development in created riparian wetlands. Wetlands Ecology Management, 94, 103–120.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation (p. 483). New York: Oxford University Press.

    Google Scholar 

  • Hangsheng, L., Dan, W., Jay, B., & Larry, W. (2005). Assessment of soil spatial variability at multiple scales. Ecological Modelling, 182, 271–290.

    Article  Google Scholar 

  • Hunter, R. B., Romeny, E. M., & Wallace, A. (1982). Nitrate distribution in Majava Desert soils. Soil Science, 134, 22–30.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University Press.

    Google Scholar 

  • Jafarian Jeloudar, Z., Arzani, H., Jafari, M., Kelarestaghi, A., Zahedi, G. H., & Azarnivand, H. (2009). Spatial distribution of soil properties using geostatistical methods in Rineh rangeland. Rangeland Journal, 3(1), 120–137.

    Google Scholar 

  • Jian-Bing, W., Du-Ning, X., Hui, Z., & Yi-Kun, F. (2008). Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environmental Geology, 53, 1663–1672.

    Article  Google Scholar 

  • Jian-Bing, W., Du-Ning, X., Xing-Yi, Z., Xiu-Zhen, L., & Xiao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, Northeast China. Environmental Monitoring and Assessment, 121, 597–613.

    Article  Google Scholar 

  • Kamare, R. (2010). Spatial variability of production, density and canopy cover percentage of Nitrariaschoberi L. in Meyghan Playa of Arak by using geostatistical methods. MSc Thesis, Tarbiat Modares University, pp. 76.

  • Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, sodium, potassium. In A. L. Page (Ed.), Methods of soil analysis, part 2. Madison, WI: ASA-SSSA.

    Google Scholar 

  • Kresic, N. (1997). Hydrogeology and groundwater modeling. Washington, D.C.: Lewis Publishers.

    Google Scholar 

  • Lanyon, L. E., & Heald, W. R. (1982). Magnesium, calcium, strontium and barium. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2 (2nd ed., pp. 247–262). Madison, WI: Agronomy No 9, American Society of Agronomy.

    Google Scholar 

  • Lopez-Granados, F., Jurado-Exposito, M., Atenciano, S., Garcia-Ferrer, A., De la Orden, M. S., & Garcia-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246, 97–105.

    Article  Google Scholar 

  • McBratney, A. B., & Webster, R. (1983). Optimal interpolation and isarithm mapping of soil properties. V. Co-regionalization and multiple sampling strategy. European Journal of Soil Science, 34, 137–162.

    Article  Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of soil analysis, part 2. Madison, WI: ASA-SSSA.

    Google Scholar 

  • Mohammad Zamani, S., Auubi, S., & Khormali, F. (2007). Investigation of spatial variability soil properties and wheat production in some of farmland of sorkhkalateh of Golestan province. Journal of Science and Technical Agriculture and Natural Recourses, 11(40), 79–91.

    Google Scholar 

  • Mohammadi, J., & RaeisiGahrooee, F. (2004). Fractal description of the impact of long-term grazing exclusion on spatial variability of some soil chemical properties. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science Isfahan University of Technology, 7(4), 25–37.

    Google Scholar 

  • Noy-Mire, I. (1973). Multivariate analysis of the semi-arid vegetation of southern Australia. II. Vegetation catena and environmental gradients. Australian Journal of Botany, 22, 15–40.

    Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis, part 2: Chemical and microbiological properties (2nd ed., pp. 403–430). Madison, WI: Agron. No.9, American Society of Agronomy.

    Google Scholar 

  • PazGonzales, A., Vieira, S. R., & Castro, T. (2000). The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma, 97, 273–292.

    Article  Google Scholar 

  • Pohlmann, H. (1993). Geostatistical modeling of environment data. Catena, 20, 191–198.

    Article  Google Scholar 

  • Robertson, G. P., Huston, M. A., Evans, F. C., & Tiedje, J. M. (1988). Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology, 69, 1517–1524.

    Article  Google Scholar 

  • Rogerio, C., Ana, L. B. H., & de Quirijn, J. L. (2006). Spatio- temporal variability of soil water tension in a tropical soil in Brazil. Geoderma, 133, 231–243.

    Article  Google Scholar 

  • Sauer, T. J., Cambardella, C. A., & Meek, D. W. (2006). Spatial variation of soil properties relating to vegetation changes. Plant and Soil, 280, 1–5.

    Article  Google Scholar 

  • Schlesinger, W. H., Raikes, J. A., Hartley, A. E., & Cross, A. F. (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77, 364–374.

    Article  Google Scholar 

  • Sovik, A. K., & Aagaard, P. (2003). Spatial variability of a solid porous framework with regard to chemical and physical properties. Geoderma, 113, 47–76.

    Article  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25, 259–260.

    Google Scholar 

  • Vasques, G. M., Grunwald, S., Comerford, N. B., & Sickman, J. O. (2010). Regional modeling of soil Carbon at multiple depth within a subtropical watershed. Geoderma, 156, 326–336.

    Article  Google Scholar 

  • Venteris, E. R., McCarty, G. W., Ritchie, J. C., & Gish, T. (2004). Influence of management history and landscape variables on soil organic carbon and soil redistribution. Soil Science, 169(11), 787–795.

    Article  Google Scholar 

  • Vieira, S. R., & Paz Gonzalez, A. (2003). Analysis of the spatial variability of crop yield and soil properties in small agricultural plots. Bragantia, Campina, 62, 127–138.

    Article  Google Scholar 

  • Virgilio, N. D., Monti, A., & Venturi, G. (2007). Spatial variability of switchgrass (Panicumvirgatum L.) yield as related to soil parameters in a small field. Field Crops Research, 101, 232–239.

    Article  Google Scholar 

  • Walkley, A. J., & Black, C. A. (1934). An estimation of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  Google Scholar 

  • Wang, X. J., & Qi, F. (1998). The effects of sampling design on spatial structure analysis of contaminated soil. The Science of the Total Environment, 224, 29–41.

    Article  Google Scholar 

  • Wang, Y., Zhang, X., & Huang, C. (2009). Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150, 141–149.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Brisbane: Wiley.

    Google Scholar 

  • Weindorf, D. C., & Zhu, Y. (2010). Spatial variability of soil properties at Capulin volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20(2), 185–197.

    Article  Google Scholar 

  • Yi-chang, W., You-lu, B., Ji-yun, J., Fang, Z., Li-ping, Z., & Xiao-qiang, L. (2009). Spatial variability of soil chemical properties in the reclaiming marine foreland to yellow sea of China. Agricultural Sciences in China, 8(9), 1103–1111.

    Article  Google Scholar 

  • Yong, Z. S., Yul, L., & Halin, Z. (2006). Soil properties and their spatial pattern in a degraded sandy grassland under post- grazing restoration, Inner Mongolia, northern China. Biogeochemistry, 79, 297–314.

    Article  Google Scholar 

  • Zhang, C. S., & McGrath, D. (2004). Geostatistical and GIS analysis on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119, 261–270.

    Article  Google Scholar 

  • Zhao, Y., Peth, S., Krummelbein, J., Horn, R., Wang, Z., Steffens, M., et al. (2007). Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modeling, 205, 241–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mushtaq A. Wani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M.A., Shaista, N. & Wani, Z.M. Spatial Variability of Some Chemical and Physical Soil Properties in Bandipora District of Lesser Himalayas. J Indian Soc Remote Sens 45, 611–620 (2017). https://doi.org/10.1007/s12524-016-0624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0624-z

Keywords

Navigation