Skip to main content
Log in

The Residuals Iteration Correction Algorithm of Exceptional Corresponding Points Based on Affine

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The corresponding points are prerequisite to the registration of Terrestrial Laser Scanning data (TLS). The exceptional corresponding points will direct impact the quality of registration. The interest in this paper is in the so-called residuals iteration correction algorithm, which focused on a new procedure for correcting the exceptional corresponding points. The kernel of the procedure is the Affine proposed by Berger (1987). This paper describes the three main steps of residuals iteration correction algorithm based on Affine, namely the decomposition of exceptional corresponding points, the propagation of registration residuals, and the correction of exceptional corresponding points. The paper outlines the key advantages of the proposed approach, such as the capability to correct exceptional corresponding point automatically according to the point precision. Furthermore, it illustrates the performance of proposed approach with a validation experiment where two exceptional corresponding points were simulated and “3S” statue TLS data in Wuhan University was acquired. From the analysis of this experiment, the result shows that the validation of correction of exceptional corresponding points based on residuals iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-D point sets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 698–700.

    Article  Google Scholar 

  • Berger, M. (1987). Geometry I. Berlin: Springer. ISBN 3-540-11658-3.

    Book  Google Scholar 

  • Besl, P. J., & Mackay, N. D. (1992). A method for registration of 32d shapes[J]. IEEE Transactions on Pattern Analysis and machine Intelligence, 14(2), 239.

    Article  Google Scholar 

  • Cheng, X., Shi, G., & Wang, F (2009). Research on point cloud registration error propagation [J]. Journal of Tong JI University (Natural Science), 37(12), 1668–1672.

    Google Scholar 

  • Cheok, G. S. (2006). In: Proceedings of the 3rd NIST Workshop on the Performance Evalution of 3d Imaging Systems. NIST Inera gency/Internal Report-7357.

  • Gruen, A. (1985). Adaptive least squares correlation: a powerful image matching technique. South African Journal of Photogrammetry Remote Sensing and Cartography, 14(3), 175–187.

    Google Scholar 

  • Gruen, A., & Akca, D. (2005). Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing, 59(3), 151–174.

    Article  Google Scholar 

  • Guan, Y., et al. (2008). A robust method of position Terrestrial Laser scanning target ball [J]. Geo technical Investigation & Surveying, 10, 42–45.

    Google Scholar 

  • Guan, Y.L., Liu, S., Zhou, S., Zhang, L.,& Lu T. (2011). Robust plane fitting of point cloud based on TLS [J]. Journal of Geodesy and Geodynamics, 31(5), 80–83.

    Google Scholar 

  • Horn, B. K. P., & Schunk, B. G. (1987). Determing optical flow [J]. Artificial Intelligence, 17, 185–203.

    Article  Google Scholar 

  • Lichti, D. D., Stewart, M. P., & Tsakiri, M. (2000). Benchmark tests on a three-dimensional laser scanning system[J]. Geomatics Research Australasia, 72, 1–24.

    Google Scholar 

  • Ling, Z. H. U. (2008). Research on the target in TLS [J]. Laser Journal, 29(1), 33–35.

    Google Scholar 

  • Liu, F. S., Zhang, G., Ling, Y., & Shi, X. Q. (2006). Advances in applied and computational mathematics [M] (pp. 133–139). New York: American, Nova Science publishers.

  • Lu, T., Zhou S., Zhang, L., & Guan, Y. L. (2009). Sphere target fixing of point cloud data based on TLS [J]. Journal of Geodesy and Geodynamics, 29(4), 102–105.

    Google Scholar 

  • Panigrahi, N., & Tripathy, S. (2002). Image registration using polynomial affine transformation[J]. Defence Science Journal, 52(3), 253–259.

    Google Scholar 

  • Pesci, A., & Teza, G. (2008). Terrestrial laser scanner and retro-reflective targets: an experiment for anomalous effects investigation [J]. International Journal of Remote Sensing, 29(19), 5749–5765.

    Article  Google Scholar 

  • Reshetyuk, Y., Horemuz, M., & Sjoberg, L. E. (2005). Determination of the optimal diameter for spherical targets used in 3D laser scanning [J]. Survey Review, 38(297), 243–253.

    Article  Google Scholar 

  • Shakarji, C. M. (1998). Least-squares fitting algorithms of the NIST algorithm testing system[J]. Journal of Research of the National Institute of Standards and Technology, 103, 633–641.

    Article  Google Scholar 

  • Tanner, C., Carter, T., Hawkes, D., & Székely, G. (2010). Cylindrical Affine Transformation Model for Image Registration [J]. Medical Imaging 2010: Image Processing Book Series: Proceedings of SPIE, 7623:14–16.

  • XiaoBei, S., & Gang, H. (2010). Research of the target center identifying Method about Terrestrial 3D Laser Scanning[J]. Urban Geo technical Investigation & Surveying, 3, 68–70.

    Google Scholar 

  • Xu, Y., et al. (2011). Research on point cloud registration error of terrestrial Laser Scanning [J]. Journal of Geodesy and Geodynamics, 31(2), 129–132.

    Google Scholar 

  • Zhang, S. L. (1987). Application research of Lodrigorous in rigorous solution of collinearity equations[J]. Journal of Wuhan Technical University of Surveying and Mapping, 12(1), 81–91.

    Google Scholar 

  • Zhang, Y., Li, Y., Hong, Y., & Chen, X. (2012). Spherical center error of sphere target in TLS [J]. Geomatics and Information Science of Wuhan University, 37(5), 598–601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Hua.

About this article

Cite this article

Chen, X., Hua, X., Jiang, J. et al. The Residuals Iteration Correction Algorithm of Exceptional Corresponding Points Based on Affine. J Indian Soc Remote Sens 42, 257–266 (2014). https://doi.org/10.1007/s12524-013-0320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0320-1

Keywords

Navigation