Skip to main content
Log in

Simple gamete preservation and artificial reproduction of mammals using micro-insemination techniques

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

Assisted reproductive technology (ART) has been applied in various procedures as an effective breeding method in experimental, domestic, and wild animals, and for the treatment of human infertility. Micro-insemination techniques such as intracytoplasmic injection of spermatozoa and spermatids are now routinely used ART tools. With these techniques, even immotile and immature sperm cells can be employed as donors for producing the next generation. Gamete preservation, another ART tool, has contributed to reproductive regulation, worldwide transportation, and disease protection of animal strains, and the preserved gametes have been effectively used for the production of offspring. ART is now an indispensable tool in mammalian reproduction. This review covers the latest ART tools, with a particular emphasis on micro-insemination and gamete preservation, and discusses the future direction of mammalian artificial reproductive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2:366.

    Article  CAS  PubMed  Google Scholar 

  2. Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168:697–8.

    Article  CAS  PubMed  Google Scholar 

  3. Austin CR. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B. 1951;4:581–96.

    PubMed  Google Scholar 

  4. Chang MC. Fertilization of rabbit ova in vitro. Nature. 1959;184:466–7.

    Article  PubMed  Google Scholar 

  5. Yanagimachi R, Chang MC. Fertilization of hamster eggs in vitro. Nature. 1963;200:281–2.

    Article  CAS  PubMed  Google Scholar 

  6. Iwamatsu T, Chang MC. In vitro fertilization of mouse eggs in the presence of bovine follicular fluid. Nature. 1969;224:919–20.

    Article  CAS  PubMed  Google Scholar 

  7. Miyamoto H, Chang MC. In vitro fertilization of rat eggs. Nature. 1973;241:50–2.

    Article  CAS  PubMed  Google Scholar 

  8. Toyoda Y, Chang MC. Fertilization of rat eggs in vitro by epididymal spermatozoa and the development of eggs following transfer. J Reprod Fertil. 1974;36:9–22.

    Article  CAS  PubMed  Google Scholar 

  9. Byers SL, Payson SJ, Taft RA. Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology. 2006;65:1716–26.

    Article  PubMed  Google Scholar 

  10. Agca Y. Genome resource banking of biomedically important laboratory animals. Theriogenology. 2012;78:1653–65.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Nakagata N. Cryopreservation of mouse spermatozoa. Mamm Genome. 2000;11:572–6.

    Article  CAS  PubMed  Google Scholar 

  12. Landel CP. Archiving mouse strains by cryopreservation. Lab Anim NY. 2005;34:50–7.

    Article  PubMed  Google Scholar 

  13. Kaenko T, Yamamura A, Ide Y, Ogi M, Yanagita T, Nakagata N. Long-term cryopreservation of mouse sperm. Theriogenology. 2006;66:1098–101.

    Article  Google Scholar 

  14. Critser JK, Mobraaten LE. Cryopreservation of murine spermatozoa. ILAR J. 2000;41:197–206.

    Article  CAS  PubMed  Google Scholar 

  15. Malter HE, Cohen J. Partial zona dissection of the human oocyte: a nontraumatic method using micromanipulation to assist zona pellucida penetration. Fertil Steril. 1989;51:139–48.

    CAS  PubMed  Google Scholar 

  16. Nakagata N, Okamoto M, Ueda O, Suzuki H. Positive effect of partial zona-pellucida dissection on the in vitro fertilizing capacity of cryopreserved C57BL/6 J transgenic mouse spermatozoa of low motility. Biol Reprod. 1997;57:1050–5.

    Article  CAS  PubMed  Google Scholar 

  17. Kawase Y, Iwata T, Ueda O, Kamada N, Tachibe T, Aoki Y, Jishage K, Suzuki H. Effect of partial incision of the zona pellucida by piezo-micromanipulator for in vitro fertilization using frozen-thawed mouse spermatozoa on the developmental rate of embryos transferred at the 2-cell stage. Biol Reprod. 2002;66:381–5.

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko T, Yanagi M, Nakashima T, Nakagata N. The improvement in fertilizing ability of cryopreserved mouse spermatozoa using laser-microdissected oocytes. Reprod Med Biol. 2006;5:249–53.

    Article  Google Scholar 

  19. Anzai M, Nishiwaki M, Yanagi M, Nakashima T, Kaneko T, Taguchi Y, Tokoro M, Shin S, Mitani T, Kato H, Matsumoto K, Nakagata N, Iritani A. Application of laser-assisted zona drilling to in vitro fertilization of cryopreserved mouse oocytes with spermatozoa from a subfertile transgenic mouse. J Reprod Dev. 2006;52:601–6.

    Article  PubMed  Google Scholar 

  20. Kaneko T, Fukumoto K, Haruguchi Y, Kondo T, Machida H, Koga M, Nakagawa Y, Tsuchiyama S, Saiki K, Noshiba S, Nakagata N. Fertilization of C57BL/6 mouse sperm collected from cauda epididymides after preservation or transportation at 4 degrees C using laser-microdissected oocytes. Cryobiology. 2009;59:59–62.

    Article  PubMed  Google Scholar 

  21. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online. 2005;10:247–88.

    Article  PubMed  Google Scholar 

  22. Goto K, Kinoshita A, Takuma Y, Ogawa K. Fertilisation of bovine oocytes by the injection of immobilised, killed spermatozoa. Vet Rec. 1990;127:517–20.

    CAS  PubMed  Google Scholar 

  23. Kimura Y, Yanagimachi R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development. 1995;121:2397–405.

    CAS  PubMed  Google Scholar 

  24. Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod. 1976;15:467–70.

    Article  CAS  PubMed  Google Scholar 

  25. Uehara T, Yanagimachi R. Behavior of nuclei of testicular, caput and cauda epididymal spermatozoa injected into hamster eggs. Biol Reprod. 1977;16:315–21.

    Article  CAS  PubMed  Google Scholar 

  26. Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod. 1995;52:709–20.

    Article  CAS  PubMed  Google Scholar 

  27. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kawase Y, Iwata T, Toyoda Y, Wakayama T, Yanagimachi R, Suzuki H. Comparison of intracytoplasmic sperm injection for inbred and hybrid mice. Mol Reprod Dev. 2001;60:74–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sakamoto W, Kaneko T, Nakagata N. Use of frozen-thawed oocytes for efficient production of normal offspring from cryopreserved mouse spermatozoa showing low fertility. Comp Med. 2005;55:136–9.

    CAS  PubMed  Google Scholar 

  30. Kaneko T, Ohno R. Improvement in the development of oocytes from C57BL/6 mice after sperm injection. J Am Assoc Lab Anim Sci. 2011;50:33–6.

    PubMed Central  PubMed  Google Scholar 

  31. Miki H, Lee J, Inoue K, Ogonuki N, Noguchi Y, Mochida K, Kohda T, Nagashima H, Ishino F, Ogura A. Microinsemination with first-wave round spermatids from immature male mice. J Reprod Dev. 2004;50:131–7.

    Article  PubMed  Google Scholar 

  32. Ogonuki N, Inoue K, Hirose M, Miura I, Mochida K, Sato T, Mise N, Mekada K, Yoshiki A, Abe K, Kurihara H, Wakana S, Ogura A. A high-speed congenic strategy using first-wave male germ cells. PLoS One. 2009;4:e4943.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471:504–7.

    Article  CAS  PubMed  Google Scholar 

  34. Yokonishi T, Sato T, Komeya M, Katagiri K, Kubota Y, Nakabayashi K, Hata K, Inoue K, Ogonuki N, Ogura A, Ogawa T. Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun. 2014;5:4320.

    Article  CAS  PubMed  Google Scholar 

  35. Kishikawa H, Tateno H, Yanagimachi R. Fertility of mouse spermatozoa retrieved from cadavers and maintained at 4 degrees C. J Reprod Fertil. 1999;116:217–22.

    Article  CAS  PubMed  Google Scholar 

  36. Ogonuki N, Mochida K, Miki H, Inoue K, Fray M, Iwaki T, Moriwaki K, Obata Y, Morozumi K, Yanagimachi R, Ogura A. Spermatozoa and spermatids retrieved from frozen reproductive organs or frozen whole bodies of male mice can produce normal offspring. Proc Natl Acad Sci USA. 2006;103:13098–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Van Thuan N, Wakayama S, Kishigami S, Wakayama T. New preservation method for mouse spermatozoa without freezing. Biol Reprod. 2005;72:444–50.

    Article  PubMed  Google Scholar 

  38. Wakayama T, Whittingham DG, Yanagimachi R. Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J Reprod Fertil. 1998;112:11–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ward MA, Kaneko T, Kusakabe H, Biggers JD, Whittingham DG, Yanagimachi R. Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. Biol Reprod. 2003;69:2100–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kaneko T, Kimura S, Nakagata N. Offspring derived from oocytes injected with rat sperm, frozen or freeze-dried without cryoprotection. Theriogenology. 2007;68:1017–21.

    Article  CAS  PubMed  Google Scholar 

  41. Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol. 1998;16:639–41.

    Article  CAS  PubMed  Google Scholar 

  42. Kusakabe H, Szczygiel MA, Whittingham DG, Yanagimachi R. Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc Natl Acad Sci USA. 2001;98:13501–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kaneko T, Whittingham DG, Yanagimachi R. Effect of pH value of freeze-drying solution on the chromosome integrity and developmental ability of mouse spermatozoa. Biol Reprod. 2003;68:136–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kaneko T, Whittingham DG, Overstreet JW, Yanagimachi R. Tolerance of the mouse sperm nuclei to freeze-drying depends on their disulfide status. Biol Reprod. 2003;69:1859–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kaneko T, Nakagata N. Improvement in the long-term stability of freeze-dried mouse spermatozoa by adding of a chelating agent. Cryobiology. 2006;53:279–82.

    Article  CAS  PubMed  Google Scholar 

  46. Kaneko T, Kimura S, Nakagata N. Importance of primary culture conditions for the development of rat ICSI embryos and long-term preservation of freeze-dried sperm. Cryobiology. 2009;58:293–7.

    Article  CAS  PubMed  Google Scholar 

  47. Kaneko T, Nakagata N. Relation between storage temperature and fertilizing ability of freeze-dried mouse spermatozoa. Comp Med. 2005;55:140–4.

    CAS  PubMed  Google Scholar 

  48. Kaneko T, Serikawa T. Successful long-term preservation of rat sperm by freeze-drying. PLoS One. 2012;7:e35043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kaneko T, Serikawa T. Long-term preservation of freeze-dried mouse spermatozoa. Cryobiology. 2012;64:211–4.

    Article  CAS  PubMed  Google Scholar 

  50. Li MW, Willis BJ, Griffey SM, Spearow JL, Lloyd KC. Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote. 2009;17:239–51.

    Article  PubMed  Google Scholar 

  51. Kaneko T. Mouse molecular embryology, methods and protocols, methods in molecular biology 1092. In: Lewandoski M, editor. The latest improvements in the mouse sperm preservation. New York: Springer; 2014. p. 357–65.

    Google Scholar 

  52. Bhowmick S, Zhu L, McGinnis L, Lawitts J, Nath BD, Toner M, Biggers J. Desiccation tolerance of spermatozoa dried at ambient temperature: production of fetal mice. Biol Reprod. 2003;68:1779–86.

    Article  CAS  PubMed  Google Scholar 

  53. Biggers JD. Evaporative drying of mouse spermatozoa. Reprod Biomed Online. 2009;19:4338.

    Article  PubMed  Google Scholar 

  54. Kaneko T. Chromosomal mutagenesis 2nd ed., methods in molecular biology 1239. In: Shondra M, editor. Simple sperm preservation by freeze-drying for conserving animal strains. Newyork: Springer; 2015. p. 317–29.

    Google Scholar 

  55. Leibo SP, Songsasen N. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology. 2002;57:303–26.

    Article  CAS  PubMed  Google Scholar 

  56. Comizzoli P, Mermillod P, Mauget R. Reproductive biotechnologies for endangered mammalian species. Reprod Nutr Dev. 2000;40:493–504.

    Article  CAS  PubMed  Google Scholar 

  57. Liu JL, Kusakabe H, Chang CC, Suzuki H, Schmidt DW, Julian M, Pfeffer R, Bormann CL, Tian XC, Yanagimachi R, Yang X. Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol Reprod. 2004;70:1776–81.

    Article  CAS  PubMed  Google Scholar 

  58. Muneto T, Horiuchi T. Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes. J Mamm Ova Res. 2011;28:32–9.

    Article  Google Scholar 

  59. Kaneko T, Ito H, Sakamoto H, Onuma M, Inoue-Murayama M. Sperm preservation by freeze-drying for the conservation of wild animals. PLoS One. 2014;9:e113381.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Dickey RP, Lu PY, Sartor BM, Dunaway HE Jr, Pyrzak R, Klumpp AM. Steps taken to protect and rescue cryopreserved embryos during hurricane Katrina. Fertil Steril. 2006;86:732–4.

    Article  PubMed  Google Scholar 

  61. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325:433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. 2011;29:695–6.

    Article  CAS  PubMed  Google Scholar 

  63. Mashimo T, Kaneko T, Sakuma T, Kobayashi J, Kunihiro Y, Voigt B, Yamamoto T, Serikawa T. Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci Rep. 2013;3:1253.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep. 2013;3:3379.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yoshimi K, Kaneko T, Voigt B, Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Comm. 2014;5:4240.

    CAS  Google Scholar 

  67. Kaneko T, Mashimo T. Chromosomal mutagenesis 2nd ed., methods in molecular biology 1239. In: Shondra M, editor. Creating knockout and knockin rodents using engineered endonucleases via direct embryo injection. Newyork: Springer; 2015. p. 307–15.

    Google Scholar 

  68. Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–3.

    Article  CAS  PubMed  Google Scholar 

  69. Kaneko T, Moisyadi S, Suganuma R, Hohn B, Yanagimachi R, Pelczar P. Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection. Theriogenology. 2005;64:1704–15.

    Article  CAS  PubMed  Google Scholar 

  70. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.

    Article  CAS  PubMed  Google Scholar 

  71. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394:369–74.

    Article  CAS  PubMed  Google Scholar 

  72. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H. Birth of parthenogenetic mice that can develop to adulthood. Nature. 2004;428:860–4.

    Article  CAS  PubMed  Google Scholar 

  73. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.

    Article  CAS  PubMed  Google Scholar 

  74. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338:971–5.

    Article  CAS  PubMed  Google Scholar 

  75. Hosoi Y, Miyake M, Utsumi K, Iritani A. In: Development of rabbit oocytes after microinjection of spermatozoa. Proceeding of the 11th international congress on animal reproduction. 1988. abstract 331.

  76. Iritani A, Hosoi Y. Microfertilization by various methods in mammalian species. Prog Clin Biol Res. 1989;294:145–9.

    CAS  PubMed  Google Scholar 

  77. Catt SL, Catt JW, Gomez MC, Maxwell WM, Evans G. Birth of a male lamb derived from an in vitro matured oocyte fertilised by intracytoplasmic injection of a single presumptive male sperm. Vet Rec. 1996;139:494–5.

    Article  CAS  PubMed  Google Scholar 

  78. Pope CE, Johnson CA, McRae MA, Keller GL, Dresser BL. Development of embryos produced by intracytoplasmic sperm injection of cat oocytes. Anim Reprod Sci. 1998;53:221–36.

    Article  CAS  PubMed  Google Scholar 

  79. Cochran R, Meintjes M, Reggio B, Hylan D, Carter J, Pinto C, Paccamonti D, Godke RA. Live foals produced from sperm-injected oocytes derived from pregnant mares. J Equine Vet Sci. 1998;18:736–40.

    Article  Google Scholar 

  80. Hewitson L, Dominko T, Takahashi D, Martinovich C, Ramalho-Santos J, Sutovsky P, Fanton J, Jacob D, Monteith D, Neuringer M, Battaglia D, Simerly C, Schatten G. Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys. Nat Med. 1999;5:431–3.

    Article  CAS  PubMed  Google Scholar 

  81. Martin MJ. Development of in vivo-matured porcine oocytes following intracytoplasmic sperm injection. Biol Reprod. 2000;63:109–12.

    Article  CAS  PubMed  Google Scholar 

  82. Miyata T, Okada H, Hashizume R, Ito M. The offspring of intracytoplasmic sperm injection in the rat. J Mamm Ova Res. 2000;17:S24.

    Google Scholar 

  83. Hirabayash M, Kato M, Aoto T, Sekimoto A, Ueda M, Miyoshi I, Kasai N, Hochi S. Offspring derived from intracytoplasmic injection of transgenic rat sperm. Transgenic Res. 2002;11:221–8.

    Article  PubMed  Google Scholar 

  84. Yamauchi Y, Yanagimachi R, Horiuchi T. Full-term development of golden hamster oocytes following intracytoplasmic sperm head injection. Biol Reprod. 2002;67:534–9.

    Article  CAS  PubMed  Google Scholar 

  85. Wang B, Baldassarre H, Pierson J, Cote F, Rao KM, Karatzas CN. The in vitro and in vivo development of goat embryos produced by intracytoplasmic sperm injection using tail-cut spermatozoa. Zygote. 2003;11:219–27.

    Article  PubMed  Google Scholar 

  86. Choi YH, Varner DD, Love CC, Hartman DL, Hinrichs K. Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction. 2011;142:529–38.

    Article  CAS  PubMed  Google Scholar 

  87. Keskintepe L, Pacholczyk G, Machnicka A, Norris K, Curuk MA, Khan I, Brackett BG. Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol Reprod. 2002;67:409–15.

    Article  CAS  PubMed  Google Scholar 

  88. Martins CF, Báo SN, Dode MN, Correa GA, Rumpf R. Effects of freeze-drying on cytology, ultrastructure, DNA fragmentation, and fertilizing ability of bovine sperm. Theriogenology. 2007;67:1307–15.

    Article  CAS  PubMed  Google Scholar 

  89. Kwon IK, Park KE, Niwa K. Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol Reprod. 2004;71:1430–6.

    Article  CAS  PubMed  Google Scholar 

  90. Sánchez-Partida LG, Simerly CR, Ramalho-Santos J. Freeze-dried primate sperm retains early reproductive potential after intracytoplasmic sperm injection. Fertil Steril. 2008;89:742–5.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Conflict of interest

The author declares no conflict of interest.

Human rights and informed consent

This article does not contain any studies with human subjects.

Animal studies

All institutional and national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehito Kaneko.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, T. Simple gamete preservation and artificial reproduction of mammals using micro-insemination techniques. Reprod Med Biol 14, 99–105 (2015). https://doi.org/10.1007/s12522-014-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-014-0202-4

Keywords

Navigation