Skip to main content

ICSI: Yesterday, Today, and Tomorrow

  • Chapter
  • First Online:
Textbook of Assisted Reproduction
  • 1307 Accesses

Abstract

Over the past 20 years, intracytoplasmic sperm injection (ICSI) has become a staple technique in the human-assisted reproduction laboratory and helped facilitate the birth of millions of healthy children for couples who in many cases had no other reproductive options. We will examine the history behind the development of the technique from animal research and early human-assisted fertilization protocols. ICSI application has exhibited great expansion in laboratory practices and modalities and now provides successful treatment options for essentially every aspect of male factor infertility. Meanwhile, the application of ICSI has expanded outside of the clinical treatment of male factor patients. This has been subject to some criticism which will be discussed along with a long history of general follow-up studies on ICSI offspring. Finally, the technique will no doubt see changes in the future including improvements and expanded utility in non-fertilization-related aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin TP. Microinjection of mouse eggs. Science. 1966;151:333–7.

    CAS  PubMed  Google Scholar 

  2. Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod. 1976;15:467–70.

    CAS  PubMed  Google Scholar 

  3. Iritani A, Utsumi K, Miyake M, Hosoi Y, Saeki K. In vitro fertilization by a routine method and by micromanipulation. Ann NY Acad Sci. 1988;541:583–90.

    CAS  PubMed  Google Scholar 

  4. Keefer CL. Fertilization by sperm injection in the rabbit. Gamete Res. 1989;22:59–69.

    CAS  PubMed  Google Scholar 

  5. Lanzendorf SE, Maloney MK, Veeck LL, Slusser J, Hodgen GD, Rosenwaks Z. A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertil Steril. 1988;49:835–42.

    CAS  PubMed  Google Scholar 

  6. Cohen J, Edwards RG, Fehilly CB, Fishel CB, Hewitt J, Rowland G, et al. Treatment of male infertility by in vitro fertilization: factors affecting fertilization and pregnancy. Acat Eur Fertil. 1984;15:455–65.

    CAS  Google Scholar 

  7. Cohen J, Malter H, Fehilly C, Wright G, Elsner C, Kort H, et al. Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration. Lancet. 1988;2:162.

    CAS  PubMed  Google Scholar 

  8. Gordon JW, Talansky BE. Assisted fertilization by zona drilling: a mouse model for correction of oligospermia. J Exp Zool. 1986;239:347–54.

    CAS  PubMed  Google Scholar 

  9. Gordon JW, Grunfeld L, Garrisi GJ, Talansky BE, Richards C, Laufer N. Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling. Fertil Steril. 1988;50:68–73.

    CAS  PubMed  Google Scholar 

  10. Lacham O, Trounson A, Holden C, Mann J, Sathananthan H. Fertilization and development of mouse eggs injected under the zona pellucida with single spermatozoa treated to induce the acrosome reaction. Gamete Res. 1989;23:233–43.

    CAS  PubMed  Google Scholar 

  11. Laws-King A, Trounson A, Sathananthan H, Kola I. Fertilization of human oocytes by microinjection of a single spermatozoon under the zona pellucida. Fertil Steril. 1987;48:637–42.

    CAS  PubMed  Google Scholar 

  12. Ng SC, Bongso A, Chang SI, Sathananthan H, Ratnam S. Transfer of human sperm into the perivitelline space of human oocytes after zona-drilling or zona-puncture. Fertil Steril. 1989;52:73–8.

    CAS  PubMed  Google Scholar 

  13. Malter HE, Cohen J. Partial zona dissection of the human oocyte: a nontraumatic method using micromanipulation to assist zona pellucida penetration. Fertil Steril. 1989;51:139–48.

    CAS  PubMed  Google Scholar 

  14. Malter H, Talansky B, Gordon J, Cohen J. Monospermy and polyspermy after partial zona dissection of reinseminated human oocytes. Gamete Res. 1989;3:377–86.

    Google Scholar 

  15. Cohen J, Elsner C, Kort H, Malter H, Massey J, Mayer MP, et al. Impairment of the hatching process following IVF in the human and improvement of implantation by assisting hatching using micromanipulation. Hum Reprod. 1990;5:7–13.

    CAS  PubMed  Google Scholar 

  16. De Boer K, McArthur S, Murray C, Jansen RPS. First live birth following blastocyst biopsy and PGD analysis. Reprod Biomed Online. 2002;4:35.

    Google Scholar 

  17. Palermo GD, O’Neill CL, Chow S, Cheung S, Parella N, Pereira N, Rosenwaks Z. Intracytoplasmic sperm injection: state of the art in humans. Reproduction. 2017;154:F93–F110.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    CAS  PubMed  Google Scholar 

  19. Joris H, Nagy Z, Van de Velde H, De Vos A, Van Steirteghem A. Intracytoplasmic sperm injection: laboratory set-up and injection procedure. Hum Reprod. 1998;13(Suppl 1):76–86.

    PubMed  Google Scholar 

  20. Malter HE, Cohen J. Intracytoplasmic sperm injection: technical aspects. In: Vayena E, Rowe PJ, Griffin PD, editors. Current practices and controversies in assisted reproduction. World Health Organization: Geneva; 2002. p. 126–32.

    Google Scholar 

  21. Devroey P, Liu J, Nagy Z, Goossens A, Tournaye H, Camus, et al. Pregnancies after testicular sperm extraction and intracytoplasmic sperm injection in non-obstructive azoospermia. Hum Reprod. 1995;10:1457–60.

    CAS  PubMed  Google Scholar 

  22. Schoysman R, Vanderzwalmen P, Nijs M, Segal-Bertin G, van de Casseye M. Successful fertilization by testicular spermatozoa in an in vitro fertilization programme. Hum Reprod. 1993;8:1339–40.

    CAS  PubMed  Google Scholar 

  23. Tanaka A, Nagayoshi M, Takemoto Y, Tanaka I, Kusunoki H, Watanabe S, et al. Fourteen babies born after round spermatid injection into human oocytes. PNAS. 2015;112:14629–34.

    CAS  PubMed  Google Scholar 

  24. Vanderzwalmen P, Zech H, Birkenfeld A, Yemini M, Bertin G, Lejeune B, et al. Intracytoplasmic injection of spermatids retrieved from testicular tissue: influence of testicular pathology, type of selected spermatids and oocyte activation. Hum Reprod. 1997;12:1203–13.

    CAS  PubMed  Google Scholar 

  25. Carlomagno G, Nordio M, Chiu TT, Unfer V. Contribution of myo-inositol and melatonin to human reproduction. Eur J Obstet Gynecol Reprod Biol. 2011;159:267–72.

    CAS  PubMed  Google Scholar 

  26. Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium. 2014;55:24–37.

    CAS  PubMed  Google Scholar 

  27. Tarlatzis BC, Kolibianakis EM, Bontis J, Tousiou M, Lagos S, Mantalenakis S. Effect of pentoxifylline on human sperm motility and fertilizing capacity. Arch Androl. 1995;34:33–42.

    CAS  PubMed  Google Scholar 

  28. Tournaye H, Van der Linden M, Van den Abbeel E, Devroey P, Van Steirteghem A. Effects of pentoxifylline on in-vitro development of preimplantation mouse embryos. Hum Reprod. 1993;8:1475–80.

    CAS  PubMed  Google Scholar 

  29. Soares JB, Glina S, Antunes N Jr, Wonchockier R, Galuppo AG, Mizrahi FE. Sperm tail flexibility test: a simple test for selecting viable spermatozoa for intracytoplasmic sperm injection from semen samples without motile spermatozoa. Rev Hosp Clin Fac Med Sao Paulo. 2003;58:250–3.

    PubMed  Google Scholar 

  30. Aktan TM, Montag M, Duman S, Gorkemli H, Rink K, Yurdakul T. Use of a laser to detect viable but immotile spermatozoa. Andrologia. 2004;36:366–9.

    CAS  PubMed  Google Scholar 

  31. Mizuno K, Hoshi K, Huang T. Fertilization and embryo development in a mouse ICSI model using human and mouse sperm after immobilization in polyvinylpyrrolidone. Hum Reprod. 2002;17:2350–5.

    PubMed  Google Scholar 

  32. Strehler E, Baccetti B, Sterzik K, Capitani S, Collodel G, De Santo M, et al. Detrimental effects of polyvinylpyrrolidone on the ultrastructure of spermatozoa (Notulae seminologicae 13). Hum Reprod. 1998;13:120–3.

    CAS  PubMed  Google Scholar 

  33. Balaban B, Lundin K, Morrell JM, Tjellstrom H, Urman B, Holmes PV. An alternative to PVP for slowing sperm prior to ICSI. Hum Reprod. 2003;18:1887–9.

    CAS  PubMed  Google Scholar 

  34. Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345:1067–8.

    CAS  PubMed  Google Scholar 

  35. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23:1–8.

    PubMed  Google Scholar 

  36. Rawe VY, Brugo Olmedo S, Nodar FN, Vitullo AD. Microtubules and parental genome organization during abnormal fertilization in humans. Zygote. 2002;10:223–8.

    PubMed  Google Scholar 

  37. Setti AS, Braga DP, Figueira RC, Iaconelli A Jr, Borges E. Intracytoplasmic morphologically selected sperm injection results in improved clinical outcomes in couples with previous ICSI failures or male factor infertility: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;183:96–103.

    PubMed  Google Scholar 

  38. Utsuno H, Oka K, Yamamoto A, Shiozawa T. Evaluation of sperm head shape at high magnification revealed correlation of sperm DNA fragmentation with aberrant head ellipticity and angularity. Fertil Steril. 2013;99:1573–80.

    PubMed  Google Scholar 

  39. Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008;17:617–27.

    PubMed  Google Scholar 

  40. Mauri AL, Petersen CG, Oliveira JB, Massaro FC, Baruffi RL, Franco JG Jr. Comparison of day 2 embryo quality after conventional ICSI versus intracytoplasmic morphologically selected sperm injection (IMSI) using sibling oocytes. Eur J Obstet Gynecol Reprod Biol. 2010;150:42–6.

    PubMed  Google Scholar 

  41. Oliveira JB, Petersen CG, Massaro FC, Baruffi RL, Mauri AL, Silva LF, et al. Motile sperm organelle morphology examination (MSOME): intervariation study of normal sperm and sperm with large nuclear vacuoles. Reprod Biol Endocrinol. 2010;8:56.

    PubMed  PubMed Central  Google Scholar 

  42. Cayli S, Jakab A, Ovari L, Delpiano E, Celik-Ozenci C, Sakkas D, et al. Biochemical markers of sperm function: male fertility and sperm selection for ICSI. Reprod Biomed Online. 2003;7:462–8.

    CAS  PubMed  Google Scholar 

  43. Huszar G, Jakab A, Sakkas D, Ozenci CC, Cayli S, Delpiano E, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed Online. 2007;14:650–63.

    PubMed  Google Scholar 

  44. Beck-Fruchter R, Shalev E, Weiss A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod Biomed Online. 2016;32:286–98.

    CAS  PubMed  Google Scholar 

  45. Vermes I, Haanen C, Steffens-Nakken H. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184:39–51.

    CAS  Google Scholar 

  46. Nadalini M, Tarozzi N, Di Santo M, Borini A. Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better than the traditional one? J Assist Reprod Genet. 2014;31:1045–51.

    PubMed  PubMed Central  Google Scholar 

  47. Romany L, Garrido N, Motato Y, Aparicio B, Remohí J, Meseguer M. Removal of annexin V-positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014;102:1567–75.

    PubMed  Google Scholar 

  48. Egashira A, Murakami M, Haigo K, Horiuchi T, Kuramoto T. A successful pregnancy and live birth after intracytoplasmic sperm injection with globozoospermic sperm and electrical oocyte activation. Fertil Steril. 2009;92:2035–9.

    Google Scholar 

  49. Dyer S, Chambers GM, De Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, et al. International Committee for Monitoring Assisted Reproductive Technologies. World report on Assisted Reproductive Technologies: 2008, 2009 and 2010. Hum Reprod. 2016;31:1588–609.

    CAS  Google Scholar 

  50. Evers JL. Santa Claus in the fertility clinic. Hum Reprod. 2016;31:1381–2.

    PubMed  Google Scholar 

  51. Molloy D, Harrison K, Breen T, Hennessey J. The predictive value of idiopathic failure to fertilize on the first in vitro fertilization attempt. Fertil Steril. 1991;56:285–9.

    CAS  PubMed  Google Scholar 

  52. Roest J, Van Heusden AM, Zeilmaker GH, Verhoeff A. Treatment policy after poor fertilization in the first IVF cycle. J Assist Reprod Genet. 1998;15:18–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vanden Meerschaut F, D’Haeseleer E, Roeyers H, Oostra A, Van Lierde K, De Sutter P. Neonatal and developmental outcome of children born following assisted oocyte activation (AOA). Fertil Steril. 2012;98:S16.

    Google Scholar 

  54. Moreno C, Ruiz A, Simón C, Pellicer A, Remohí J. Intracytoplasmic sperm injection as a routine indication in low responder patients. Hum Reprod. 1998;13:2126–9.

    CAS  PubMed  Google Scholar 

  55. Johnson LN, Sasson IE, Sammel MD, Dokras A. Does intracytoplasmic sperm injection improve the fertilization rate and decrease the total fertilization failure rate in couples with well-defined unexplained infertility? A systematic review and meta-analysis. Fertil Steril. 2013;100:704–11.

    PubMed  Google Scholar 

  56. Nasr-Esfahani MH, Deemeh MR, Tavalaee M. Artificial oocyte activation and intracytoplasmic sperm injection. Fertil Steril. 2010;94:520–6.

    PubMed  Google Scholar 

  57. Tesarik J, Sousa M, Testart J. Human oocyte activation after intracytoplasmic sperm injection. Hum Reprod. 1994;9:511–8.

    CAS  PubMed  Google Scholar 

  58. Yanagida K, Katayose H, Yazawa H, Kimura Y, Sato A, Yanagimachi H, Yanagimachi R. Successful fertilization and pregnancy following ICSI and electrical oocyte activation. Hum Reprod. 1999;14:1307–11.

    CAS  PubMed  Google Scholar 

  59. Kyono K, Takisawa T, Nakajo Y, Doshida M, Toya M. Birth and follow-up of babies born following ICSI with oocyte activation using strontium chloride or calcium ionophore A23187. J Mamm Ova Res. 2012;29:35–40.

    Google Scholar 

  60. Practice Committee of the ASRM and SART. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: a committee opinion. Fertil Steril. 2012;98:1395–9.

    Google Scholar 

  61. Hewitson L, Simerly C, Dominko T, Schatten G. Cellular and molecular events after in vitro fertilization and intracytoplasmic sperm injection. Theriogenology. 2000;53:95–104.

    CAS  PubMed  Google Scholar 

  62. Ramalho-Santos J, Sutovsky P, Simerly C, Oko R, Wessel GM, Hewitson L, et al. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum Reprod. 2000;15:2610–20.

    CAS  PubMed  Google Scholar 

  63. Sackett G, Ruppenthal G, Hewitson L, Simerly C, Schatten G. Neonatal behavior and infant cognitive development in rhesus macaques produced by assisted reproductive technologies. Dev Psychobiol. 2006;48:243–65.

    PubMed  Google Scholar 

  64. Simerly CR, Castro CA, Jacoby E, Grund K, Turpin J, McFarland D, et al. Assisted reproductive technologies (ART) with baboons generate live offspring: a nonhuman primate model for ART and reproductive sciences. Reprod Sci. 2010;17:917–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y, et al. Birth defects in children conceived by in-vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012;97:1331–7.

    PubMed  Google Scholar 

  66. Belva F, Henriet S, Liebaers I, Van Steirteghem A, Celestin-Westreich S, Bonduelle M. Medical outcome of 8-year-old singleton ICSI children (born at 32 weeks’ gestation) and a spontaneously conceived comparison group. Hum Reprod. 2007;22:506–15.

    CAS  PubMed  Google Scholar 

  67. Bonduelle M, Legein J, Buysse A, Van Assche E, Wisanto A, Devroey P, et al. Prospective follow-up study of 423 children born after intracytoplasmic sperm injection. Hum Reprod. 1996;11:1558–64.

    CAS  PubMed  Google Scholar 

  68. Bowen JR, Gibson F, Leslie GI, Saunders DM. Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet. 1998;351:1529–34.

    CAS  PubMed  Google Scholar 

  69. Katalinic A, Rosch C, Ludwig M. Pregnancy course and outcome after intracytoplasmic sperm injection: a controlled, prospective cohort study. Fertil Steril. 2004;81:1604–16.

    PubMed  Google Scholar 

  70. Bonduelle M, Wennerholm UB, Loft A, Tarlatzis BC, Peters C, Henriet S, et al. A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum Reprod. 2005;20:413–9.

    CAS  PubMed  Google Scholar 

  71. Bonduelle M, Aytoz A, Van Assche E, Devroey P, Liebaers I, Van Steirteghem A. Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Hum Reprod. 1998;13:781–2.

    CAS  PubMed  Google Scholar 

  72. Munne S, Marquez C, Reing A, Garrisi J, Alikani M. Chromosome abnormalities in embryos obtained after conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 1998;69:904–8.

    CAS  PubMed  Google Scholar 

  73. Girardi SK, Mielnik A, Schlegel PN. Submicroscopic deletions in the Y chromosome of infertile men. Hum Reprod. 1997;12:1635–41.

    CAS  PubMed  Google Scholar 

  74. Kent-First MG, Kol S, Muallem A, Ofir R, Manor D, Blazer S, et al. The incidence and possible relevance of Y-linked microdeletions in babies born after intracytoplasmic sperm injection and their infertile fathers. Mol Hum Reprod. 1996;2:943–50.

    CAS  PubMed  Google Scholar 

  75. Belva F, Bonduelle M, Painter RC, Schiettecatte J, Devroey P, De Schepper J. Serum inhibin B concentrations in pubertal boys conceived by ICSI: first results. Hum Reprod. 2010;25:2811–4.

    CAS  PubMed  Google Scholar 

  76. Belva F, Bonduelle M, Schiettecatte J, Tournaye H, Painter RC, Devroey P, De Schepper J. Salivary testosterone concentrations in pubertal ICSI boys compared with spontaneously conceived boys. Hum Reprod. 2011;26:438–41.

    CAS  PubMed  Google Scholar 

  77. Lu Z, Zhang X, Leung C, Esfandiari N, Casper RF, Sun Y. Robotic ICSI (intracytoplasmic sperm injection). IEEE Trans Biomed Eng. 2011;58:2102–8.

    PubMed  Google Scholar 

  78. Black M, Liu DY, Bourne H, Baker HW. Comparison of outcomes of conventional intracytoplasmic sperm injection and intracytoplasmic sperm injection using sperm bound to the zona pellucida of immature oocytes. Fertil Steril. 2010;93:672–4.

    PubMed  Google Scholar 

  79. Hong SJ, Chiu PC, Lee KF, Tse JM, Ho PC, Yeung WS. Establishment of a capillary-cumulus model to study the selection of sperm for fertilization by the cumulus oophorus. Hum Reprod. 2004;19:1562–9.

    CAS  PubMed  Google Scholar 

  80. Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33:221–9.

    CAS  PubMed  Google Scholar 

  81. Muggleton-Harris A, Wittingham DG, Wilson L. Cytoplasmic control of preimplantation development in vitro in the mouse. Nature. 1982;299:460–2.

    CAS  PubMed  Google Scholar 

  82. Smith LC, Alcivar AA. Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil. 1993;48:31–43.

    CAS  Google Scholar 

  83. Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet. 1997;350:186–7.

    CAS  PubMed  Google Scholar 

  84. Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod. 2001;16:513–6.

    CAS  PubMed  Google Scholar 

  85. Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod. 1998;4:269–80.

    CAS  PubMed  Google Scholar 

  86. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18:413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Woods DC, Tilly JL. The next (re)generation of ovarian biology and fertility in women: is current science tomorrow’s practice? Fertil Steril. 2012;98:3–10.

    PubMed  PubMed Central  Google Scholar 

  88. Demur EL, Herraiz S, De los Santos MJ, Marzal A, Escriba MJ, Buigues A, Pellicer A. Autologous mitochondrial transfer as a complimentary technique to ICSI to improve oocyte and embryo quality in IVF patients. A randomized pilot study. Hum Reprod. 2018;33(Suppl 1):i96.

    Google Scholar 

  89. Woods DC, Tilly JL. Autologous germline mitochondrial EnergyTransfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33:410–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mazur P, Veselovsky V, Masliy Y, Borisov M, Mykytenko D, Zukin V. Three babies born after pronuclear transplantation in young women with unexplained infertility and repeated implantation failure of euploid embryos. Hum Reprod. 2018;33(Suppl 1):i60.

    Google Scholar 

  91. Zhang J, Zhuang G, Zeng Y, Grifo J, Acosta C, Shu Y, et al. Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod Biomed Online. 2016;33:529–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry E. Malter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malter, H.E. (2020). ICSI: Yesterday, Today, and Tomorrow. In: Allahbadia, G.N., Ata, B., Lindheim, S.R., Woodward, B.J., Bhagavath, B. (eds) Textbook of Assisted Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-15-2377-9_87

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2377-9_87

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2376-2

  • Online ISBN: 978-981-15-2377-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics