Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991;113:891–911.
PubMed
CAS
Google Scholar
Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994;182:68–84 (discussion 84–91).
PubMed
CAS
Google Scholar
Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990;110:521–8.
PubMed
CAS
Google Scholar
Buehr M. The primordial germ cells of mammals: some current perspectives. Exp Cell Res. 1997;232:194–207.
PubMed
CAS
Google Scholar
Chiquoine AD. The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat Rec. 1954;118:135–46.
PubMed
CAS
Google Scholar
Hahnel AC, Rappolee DA, Millan JL, Manes T, Ziomek CA, Theodosiou NG, et al. Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development. 1990;110:555–64.
PubMed
CAS
Google Scholar
MacGregor GR, Zambrowicz BP, Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development. 1995;121:1487–96.
PubMed
CAS
Google Scholar
Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992;70:841–7.
PubMed
CAS
Google Scholar
Resnick JL, Bixler LS, Cheng L, Donovan PJ. Long-term proliferation of mouse primordial germ cells in culture. Nature. 1992;359:550–1.
PubMed
CAS
Google Scholar
Schatten H, Sun Q-Y. The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environ Mol Mutagen. 2009;50:620–36.
PubMed
CAS
Google Scholar
Dean W, Ferguson-Smith A. Genomic imprinting: mother maintains methylation marks. Curr Biol. 2001;11:R527–30.
PubMed
CAS
Google Scholar
Fulka H, Mrazek M, Tepla O, Fulka J. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004;128:703–8.
PubMed
CAS
Google Scholar
Reis Silva AR, Adenot P, Daniel N, Archilla C, Peynot N, Lucci CM, et al. Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization. Epigenetics. 2011;6:987–93.
PubMed
Google Scholar
Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science. 2004;303:644–9.
PubMed
CAS
Google Scholar
Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P, Daniel N, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. 2011;472:370–4.
PubMed
CAS
Google Scholar
Brown CJ, Willard HF. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature. 1994;368:154–6.
PubMed
CAS
Google Scholar
Rack KA, Chelly J, Gibbons RJ, Rider S, Benjamin D, Lafreniére RG, et al. Absence of the XIST gene from late-replicating isodicentric X chromosomes in leukaemia. Hum Mol Genet. 1994;3:1053–9.
PubMed
CAS
Google Scholar
Ray PF, Winston RM, Handyside AH. XIST expression from the maternal X chromosome in human male preimplantation embryos at the blastocyst stage. Hum Mol Genet. 1997;6:1323–7.
PubMed
CAS
Google Scholar
Rossant J. Developmental biology: a mouse is not a cow. Nature. 2011;471:457–8.
PubMed
CAS
Google Scholar
Chawengsaksophak K, James R, Hammond VE, Köntgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997;386:84–7.
PubMed
CAS
Google Scholar
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.
PubMed
CAS
Google Scholar
Strumpf D, Mao C-A, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132:2093–102.
PubMed
CAS
Google Scholar
Grabarek JB, Zyzyńska K, Saiz N, Piliszek A, Frankenberg S, Nichols J, et al. Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development. 2012;139:129–39.
PubMed
CAS
PubMed Central
Google Scholar
Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, et al. Trophectoderm lineage determination in cattle. Dev Cell. 2011;20:244–55.
PubMed
CAS
Google Scholar
Dietrich J-E, Hiiragi T. Stochastic patterning in the mouse pre-implantation embryo. Development. 2007;134:4219–31.
PubMed
CAS
Google Scholar
Palmieri SL, Peter W, Hess H, Scholer HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol. 1994;166:259–67.
PubMed
CAS
Google Scholar
Cauffman G, Liebaers I, Van Steirteghem A, Van de Velde H. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells. 2006;24:2685–91.
PubMed
CAS
Google Scholar
Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu C-W, Hochedlinger K, et al. Cross-regulation of the Nanog and Cdx2 promoters. Cell Res. 2009;19:1052–61.
PubMed
Google Scholar
Harvey AJ, Armant DR, Bavister BD, Nichols SM, Brenner CA. Inner cell mass localization of NANOG precedes OCT3/4 in rhesus monkey blastocysts. Stem Cells Dev. 2009;18:1451–8.
PubMed
CAS
PubMed Central
Google Scholar
Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod. 2000;63:1698–705.
PubMed
CAS
Google Scholar
Kuijk EW, Du Puy L, Van Tol HTA, Oei CHY, Haagsman HP, Colenbrander B, et al. Differences in early lineage segregation between mammals. Dev Dyn. 2008;237:918–27.
PubMed
CAS
Google Scholar
Mitalipov SM, Kuo H-C, Hennebold JD, Wolf DP. Oct-4 expression in pluripotent cells of the rhesus monkey. Biol Reprod. 2003;69:1785–92.
PubMed
CAS
Google Scholar
Pant D, Keefer CL. Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning Stem Cells. 2009;11:355–65.
PubMed
CAS
Google Scholar
van Eijk MJ, van Rooijen MA, Modina S, Scesi L, Folkers G, van Tol HT, et al. Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol Reprod. 1999;60:1093–103.
PubMed
Google Scholar
Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375:54–64.
PubMed
CAS
Google Scholar
Selwood L, Johnson MH. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. BioEssays. 2006;28:128–45.
PubMed
Google Scholar
Viebahn C. The anterior margin of the mammalian gastrula: comparative and phylogenetic aspects of its role in axis formation and head induction. Curr Top Dev Biol. Amsterdam: Elsevier; 1999. p. 63–103.
Google Scholar
Guillomot M. Cellular interactions during implantation in domestic ruminants. J Reprod Fertil Suppl. 1995;49:39–51.
PubMed
CAS
Google Scholar
Herrmann BG. Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development. 1991;113(3):913–7.
PubMed
CAS
Google Scholar
Hue I, Renard JP, Viebahn C. Brachyury is expressed in gastrulating bovine embryos well ahead of implantation. Dev Genes Evol. 2001;211:157–9.
PubMed
CAS
Google Scholar
Flechon JE. Morphological aspects of embryonic disc at the time of its appearance in the blastocyst of farm mammals [Sow, ewe and rabbit, scanning electron microscopy]. Scanning Electron Microscope (USA). 1978;2:541–6.
Barends PM, Stroband HW, Taverne N, te Kronnie G, Leën MP, Blommers PC. Integrity of the preimplantation pig blastocyst during expansion and loss of polar trophectoderm (Rauber cells) and the morphology of the embryoblast as an indicator for developmental stage. J Reprod Fertil. 1989;87:715–26.
PubMed
CAS
Google Scholar
Vejlsted M, Du Y, Vajta G, Maddox-Hyttel P. Post-hatching development of the porcine and bovine embryo—defining criteria for expected development in vivo and in vitro. Theriogenology. 2006;65:153–65.
PubMed
Google Scholar
Beddington RS, Robertson EJ. Axis development and early asymmetry in mammals. Cell. 1999;96:195–209.
PubMed
CAS
Google Scholar
Nichols J, Smith A. Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol. 2012;4(8):a008128.
PubMed
PubMed Central
Google Scholar
De Felici M. Origin, migration and proliferation of human primordial germ cells. In: Oogenesis. Berlin: Springer; 2013. p. 19–37.
Viebahn C. Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat. 1995;154(1):79–97.
Viebahn C, Stortz C, Mitchell SA, Blum M. Low proliferative and high migratory activity in the area of Brachyury expressing mesoderm progenitor cells in the gastrulating rabbit embryo. Development. 2002;129:2355–65.
PubMed
CAS
Google Scholar
Idkowiak J, Weisheit G, Plitzner J, Viebahn C. Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo. Dev Genes Evol. 2004;214:591–605.
PubMed
Google Scholar
Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436(7048):207–13.
PubMed
CAS
Google Scholar
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell. 2009;137:571–84.
PubMed
CAS
Google Scholar
Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet. 1999;22:361–5.
PubMed
CAS
Google Scholar
Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev Cell. 2013;27:516–29.
PubMed
CAS
Google Scholar
Hopf C, Viebahn C, Püschel B. BMP signals and the transcriptional repressor BLIMP1 during germline segregation in the mammalian embryo. Dev Genes Evol. 2011;221:209–23.
PubMed
CAS
PubMed Central
Google Scholar
Behringer RR, Wakamiya M, Tsang TE, Tam PP. A flattened mouse embryo: leveling the playing field. Genesis. 2000;28:23–30.
PubMed
CAS
Google Scholar
Magnúsdóttir E, Dietmann S, Murakami K, Günesdogan U, Tang F, Bao S, et al. A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol. 2013;15:905–15.
PubMed
PubMed Central
Google Scholar
Bortvin A, Goodheart M, Liao M, Page DC. Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev Biol. 2004;4:2.
PubMed
PubMed Central
Google Scholar
Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996;122:881–94.
PubMed
CAS
Google Scholar
Yoshimizu T, Sugiyama N, De Felice M, Yeom YI, Ohbo K, Masuko K, et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ. 1999;41:675–84.
PubMed
CAS
Google Scholar
Okamura D, Tokitake Y, Niwa H, Matsui Y. Requirement of Oct3/4 function for germ cell specification. Dev Biol. 2008;317:576–84.
PubMed
CAS
Google Scholar
Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 2004;5:1078–83.
PubMed
CAS
PubMed Central
Google Scholar
Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn. 2004;230:187–98.
PubMed
CAS
Google Scholar
Hatano S-Y, Tada M, Kimura H, Yamaguchi S, Kono T, Nakano T, et al. Pluripotential competence of cells associated with Nanog activity. Mech Dev. 2005;122:67–79.
PubMed
CAS
Google Scholar
Acampora D, Di Giovannantonio LG, Simeone A. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development. 2012;140:43–55.
PubMed
Google Scholar
Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005;5:639–46.
PubMed
CAS
Google Scholar
Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 2007;450:1230–4.
PubMed
CAS
Google Scholar
Yamaguchi S, Kurimoto K, Yabuta Y, Sasaki H, Nakatsuji N, Saitou M, et al. Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development. 2009;136:4011–20.
PubMed
CAS
Google Scholar
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, et al. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells. 2013;31:1408–21.
PubMed
CAS
Google Scholar
Schäfer-Haas A, Viebahn C. The term cell epitope PG-2 is expressed in primordial germ cells and in hypoblast cells of the gastrulating rabbit embryo. Anat Embryol. 2000;202:13–23.
PubMed
Google Scholar
Hyttel P, Kamstrup KM, Hyldig S. From hatching into fetal life in the pig. Acta Scientiae Veterinariae. 2011;39(Suppl 1):s203–21.
Google Scholar
Takagi Y, Talbot NC, Rexroad CE, Pursel VG. Identification of pig primordial germ cells by immunocytochemistry and lectin binding. Mol Reprod Dev. 1997;46:567–80.
PubMed
CAS
Google Scholar
Martins DS, Ambrósio CE, Saraiva NZ, Wenceslau CV, Morini AC, Kerkis I, et al. Early development and putative primordial germ cells characterization in dogs. Reprod Domest Anim. 2011;46:e62–6.
PubMed
CAS
Google Scholar
Ledda S, Bogliolo L, Bebbere D, Ariu F, Pirino S. Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species. Theriogenology. 2010;74:534–43.
PubMed
CAS
Google Scholar
Witschi E. Migration of germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contr Embryol Carnegie Inst. 1948;209:67–80.
Google Scholar
de Jong J, Stoop H, Gillis A, van Gurp R, van de Geijn G-J, de Boer M, et al. Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol. 2008;215:21–30.
PubMed
Google Scholar
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.
PubMed
CAS
Google Scholar
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634–8.
PubMed
CAS
PubMed Central
Google Scholar
Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA. 1995;92:7844–8.
PubMed
CAS
PubMed Central
Google Scholar
Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod. 1996;55:254–9.
PubMed
CAS
Google Scholar
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.
PubMed
CAS
Google Scholar
Fang ZF, Gai H, Huang YZ, Li SG, Chen XJ, Shi JJ, et al. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp Cell Res. 2006;312:3669–82.
PubMed
CAS
Google Scholar
Wang S, Tang X, Niu Y, Chen H, Li B, Li T, et al. Generation and characterization of rabbit embryonic stem cells. Stem Cells. 2007;25:481–9.
PubMed
CAS
Google Scholar
Honda A, Hirose M, Inoue K, Ogonuki N, Miki H, Shimozawa N, et al. Stable embryonic stem cell lines in rabbits: potential small animal models for human research. Reprod Biomed Online. 2008;17:706–15.
PubMed
Google Scholar
Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal. 2011;17:474–97.
PubMed
CAS
Google Scholar
Brons IGM, LE Smithers, Trotter MWB, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–5.
PubMed
CAS
Google Scholar
Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–9.
PubMed
CAS
Google Scholar
Kakegawa R, Teramura T, Takehara T, Anzai M, Mitani T, Matsumoto K, et al. Isolation and culture of rabbit primordial germ cells. J Reprod Dev. 2008;54:352–7.
PubMed
CAS
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
PubMed
CAS
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
PubMed
CAS
Google Scholar
Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell. 2008;3:587–90.
PubMed
CAS
Google Scholar
Honda A, Hirose M, Hatori M, Matoba S, Miyoshi H, Inoue K, et al. Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem. 2010;285:31362–9.
PubMed
CAS
PubMed Central
Google Scholar
Gillich A, Hayashi K. Switching stem cell state through programmed germ cell reprogramming. Differentiation. 2011;81:281–91.
PubMed
CAS
Google Scholar
Chia N-Y, Chan Y-S, Feng B, Lu X, Orlov YL, Moreau D, et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature. 2010;468:316–20.
PubMed
CAS
Google Scholar
ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol. 2011;13(9):1070–5.
PubMed
PubMed Central
Google Scholar
Daheron L, Opitz SL, Zaehres H, Lensch MW, Lensch WM, Andrews PW, et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells. 2004;22:770–8.
PubMed
CAS
Google Scholar
Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT, Rose-John S, Hayek A. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells. 2004;22(4):522–30.
PubMed
CAS
Google Scholar
Brandenberger R, Khrebtukova I, Thies RS, Miura T, Jingli C, Puri R, et al. MPSS profiling of human embryonic stem cells. BMC Dev Biol. 2004;4:10.
PubMed
PubMed Central
Google Scholar
Rho J-Y, Yu K, Han J-S, Chae J-I, Koo D-B, Yoon H-S, et al. Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells. Hum Reprod. 2006;21:405–12.
PubMed
CAS
Google Scholar
Xu R-H, Chen X, Li DS, Li R, Addicks GC, Glennon C, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20:1261–4.
PubMed
CAS
Google Scholar
Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development. 2008;135:2969–79.
PubMed
CAS
Google Scholar
Greber B, Wu G, Bernemann C, Joo JY, Han DW, Ko K, et al. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell. 2010;6:215–26.
PubMed
CAS
Google Scholar
Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.
PubMed
CAS
Google Scholar
Park J-K, Kim H-S, Uh K-J, Choi K-H, Kim H-M, Lee T, et al. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS ONE. 2013;8:e52481.
PubMed
CAS
PubMed Central
Google Scholar
Alberio R, Croxall N, Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 2010;19:1627–36.
PubMed
CAS
PubMed Central
Google Scholar
Honda A, Hirose M, Ogura A. Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells. Exp Cell Res. 2009;315:2033–42.
PubMed
CAS
Google Scholar
Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.
PubMed
CAS
Google Scholar
Nakatsuji N, Suemori H. Embryonic stem cell lines of nonhuman primates. ScientificWorldJournal. 2002;2:1762–73.
PubMed
Google Scholar
Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev. 2012;21:2288–97.
PubMed
CAS
Google Scholar
Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, et al. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells. 2003;21:598–609.
PubMed
Google Scholar
Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998;95:13726–31.
PubMed
CAS
PubMed Central
Google Scholar
Mitalipov S, Kuo H-C, Byrne J, Clepper L, Meisner L, Johnson J, et al. Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells. 2006;24:2177–86.
PubMed
CAS
Google Scholar
Müller T, Fleischmann G, Eildermann K, Mätz-Rensing K, Horn PA, Sasaki E, et al. A novel embryonic stem cell line derived from the common marmoset monkey (Callithrix jacchus) exhibiting germ cell-like characteristics. Hum Reprod. 2009;24:1359–72.
PubMed
Google Scholar
Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, et al. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Mol Reprod Dev. 2006;73:298–305.
PubMed
CAS
Google Scholar
West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, et al. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 2010;19:1211–20.
PubMed
CAS
Google Scholar
De Los Angeles A, Loh Y-H, Tesar PJ, Daley GQ. Accessing naïve human pluripotency. Curr Opin Genet Dev. 2012;22:272–82.
PubMed
CAS
PubMed Central
Google Scholar
Gillich A, Bao S, Grabole N, Hayashi K, Trotter MWB, Pasque V, et al. Epiblast stem cell-based system reveals reprogramming synergy of germline factors. Cell Stem Cell. 2012;10:425–39.
PubMed
CAS
PubMed Central
Google Scholar
Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA. 2010;107:9222–7.
PubMed
CAS
PubMed Central
Google Scholar
Wang W, Yang J, Liu H, Lu D, Chen X, Zenonos Z, et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci USA. 2011;108:18283–8.
PubMed
CAS
PubMed Central
Google Scholar
Ware CB, Wang L, Mecham BH, Shen L, Nelson AM, Bar M, et al. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell. 2009;4:359–69.
PubMed
CAS
PubMed Central
Google Scholar
Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282–6.
PubMed
CAS
Google Scholar
Chan Y-S, Göke J, Ng J-H, Lu X, Gonzales KAU, Tan C-P, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell. 2013;13:663–75.
PubMed
CAS
Google Scholar
Honda A, Hatori M, Hirose M, Honda C, Izu H, Inoue K, et al. Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells. J Biol Chem. 2013;288:26157–66.
PubMed
CAS
PubMed Central
Google Scholar
Fujishiro S-H, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, et al. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 2013;22:473–82.
PubMed
CAS
PubMed Central
Google Scholar
Tang F, Barbacioru C, Nordman E, Bao S, Lee C, Wang X, et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE. 2011;6(6):e21208.
PubMed
CAS
PubMed Central
Google Scholar
Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–9.
PubMed
CAS
Google Scholar
Imamura M, Hikabe O, Lin ZY-C, Okano H. Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol Reprod Dev. 2014;81:2–19.
PubMed
CAS
Google Scholar
Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.
PubMed
CAS
Google Scholar
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338:971–5.
PubMed
CAS
Google Scholar
Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature. 2013;501:222–6.
PubMed
CAS
Google Scholar
Julaton VTA, Reijo Pera RA. NANOS3 function in human germ cell development. Hum Mol Genet. 2011;20:2238–50.
PubMed
CAS
PubMed Central
Google Scholar
Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature. 2009;462:222–5.
PubMed
CAS
PubMed Central
Google Scholar
Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, Takenoshita M, et al. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells. 2007;9:144–56.
PubMed
CAS
Google Scholar
Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS ONE. 2009;4:e5338.
PubMed
PubMed Central
Google Scholar
Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram. 2010;12(4):369–76.
PubMed
CAS
Google Scholar
Gilbert SF. Developmental biology. Massachusetts: Sinauer Associates; 2010.
Google Scholar