Skip to main content
Log in

Functions of interferon tau as an immunological regulator for establishment of pregnancy

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

The establishment of a successful pregnancy requires a “fine quality embryo”, “maternal recognition of pregnancy”, and a “receptive uterus” during the period of conceptus implantation to the uterine endometrium. In ruminants, a conceptus cytokine, interferon tau (IFNT), a major cytokine produced by the peri-implantation trophectoderm, is known as a key factor for maternal recognition of pregnancy. IFNT can be considered one of the main factors in conceptus–uterus cross-talk, resulting in the rescue of ovarian corpus luteum (CL), induction of endometrial gene expressions, activation of residual immune cells, and recruitment of immune cells. Much research on IFNT has focused on the CL life-span (pregnancy recognition) and uterine gene expression through IFNT and related genes; however, immunological acceptance of the conceptus by the mother has not been well characterized. In this review, we will discuss the progress in IFNT and implantation research made by us and others for over 10 years, and relate this progress to pregnancy in mammalian species other than ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hearn JP, Webley GE, Gidley-Baird AA. Chorionic gonadotrophin and embryo-maternal recognition during the peri-implantation period in primates. J Reprod Fertil. 1991;92:497–509.

    Article  PubMed  CAS  Google Scholar 

  2. Soares MJ, Faria TW, Roby KF, Deb S. Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine and placental expression. Endocr Rev. 1991;12:402–23.

    Article  PubMed  CAS  Google Scholar 

  3. Godkin JD, Bazer FW, Moffat J, Sessions F, Roberts RM. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13–21. J Reprod Fertil. 1982;65:141–50.

    Article  PubMed  CAS  Google Scholar 

  4. Imakawa K, Anthony RV, Kazemi M, Marotti KR, Polites HG, Roberts RM. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature. 1987;330:377–9.

    Article  PubMed  CAS  Google Scholar 

  5. Roberts RM, Leaman DW, Cross JC. Role of interferons in maternal recognition of pregnancy in ruminants. Proc Soc Exp Biol Med. 1992;200:7–18.

    PubMed  CAS  Google Scholar 

  6. Spencer TE, Becker WC, George P, Mirando MA, Ogle TF, Bazer FW. Ovine interferon-tau regulates expression of endometrial receptors for estrogen and oxytocin but not progesterone. Biol Reprod. 1995;53:732–45.

    Article  PubMed  CAS  Google Scholar 

  7. Spencer TE, Bazer FW. Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology. 1996;137:1144–7.

    Article  PubMed  CAS  Google Scholar 

  8. Farin CE, Imakawa K, Roberts RM. In situ localization of mRNA for the interferon, ovine trophoblast protein-1, during early embryonic development of the sheep. Mol Endocrinol. 1989;3:1099–107.

    Article  PubMed  CAS  Google Scholar 

  9. Guillomot M, Michel C, Gaye P, Charlier N, Trojan J, Martal J. Cellular localization of an embryonic interferon, ovine trophoblastin and its mRNA in sheep embryos during early pregnancy. Biol Cell. 1990;68:205–11.

    Article  PubMed  CAS  Google Scholar 

  10. Ashworth CJ, Bazer FW. Changes in ovine conceptus and endometrial function following asynchronous embryo transfer or administration of progesterone. Biol Reprod. 1989;40:425–33.

    Article  PubMed  CAS  Google Scholar 

  11. Gnatek GG, Smith LD, Duby RT, Godkin JD. Maternal recognition of pregnancy in the goat: effects of conceptus removal on interestrus intervals and characterization of conceptus protein production during early pregnancy. Biol Reprod. 1989;41:655–63.

    Article  PubMed  CAS  Google Scholar 

  12. Imakawa K, Hansen TR, Malathy PV, Anthony RV, Polites HG, Marotti KR, Roberts RM. Molecular cloning and characterization of complementary deoxyribonucleic acids corresponding to bovine trophoblast protein-1: a comparison with ovine trophoblast protein-1 and bovine interferon-alpha II. Mol Endocrinol. 1989;3:127–39.

    Article  PubMed  CAS  Google Scholar 

  13. Lifsey BJ Jr, Baumbach GA, Godkin JD. Isolation, characterization and immunocytochemical localization of bovine trophoblast protein-1. Biol Reprod. 1989;40:343–52.

    Article  PubMed  CAS  Google Scholar 

  14. Quagliarello J, Goldsmith L, Steinetz B, Lustig DS, Weiss G. Induction of relaxin secretion in nonpregnant women by human chorionic gonadotropin. J Clin Endocrinol Metab. 1980;51:74–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kratzer PG, Taylor RN. Corpus luteum function in early pregnancies is primarily determined by the rate of change of human chorionic gonadotropin levels. Am J Obstet Gynecol. 1990;163:1497–502.

    PubMed  CAS  Google Scholar 

  16. Johnson MR, Bolton VN, Riddle AF, Sharma V, Nicolaides K, Grudzinskas JG, Collins WP. Interactions between the embryo and corpus luteum. Hum Reprod. 1993;8:1496–501.

    PubMed  CAS  Google Scholar 

  17. Wegmann TG. Foetal protection against abortion: is it immunosuppression or immunostimulation? Ann Immunol (Paris). 1984;135D:309–12.

    CAS  Google Scholar 

  18. Wegmann TG. Maternal T cells promote placental growth and prevent spontaneous abortion. Immunol Lett. 1988;17:297–302.

    Article  PubMed  CAS  Google Scholar 

  19. Athanassakis I, Bleackley RC, Paetkau V, Guilbert L, Barr PJ, Wegmann TG. The immunostimulatory effect of T cells and T cell lymphokines on murine fetally derived placental cells. J Immunol. 1987;138:37–44.

    PubMed  CAS  Google Scholar 

  20. Chaouat G, Menu E, Clark DA, Dy M, Minkowski M, Wegmann TG. Control of fetal survival in CBA × DBA/2 mice by lymphokine therapy. J Reprod Fertil. 1990;89:447–58.

    Article  PubMed  CAS  Google Scholar 

  21. Guimond MJ, Luross JA, Wang B, Terhorst C, Danial S, Croy BA. Absence of natural killer cells during murine pregnancy is associated with reproductive compromise in TgE26 mice. Biol Reprod. 1997;56:169–79.

    Article  PubMed  CAS  Google Scholar 

  22. Guimond MJ, Wang B, Croy BA. Engraftment of bone marrow from severe combined immunodeficient (SCID) mice reverses the reproductive deficits in natural killer cell-deficient tg epsilon 26 mice. J Exp Med. 1998;187:217–23.

    Article  PubMed  CAS  Google Scholar 

  23. Chaouat G, Zourbas S, Ostojic S, Lappree-Delage G, Dubanchet S, Ledee N, Martal J. A brief review of recent data on some cytokine expressions at the materno-foetal interface which might challenge the classical Th1/Th2 dichotomy. J Reprod Immunol. 2002;53:241–56.

    Article  PubMed  CAS  Google Scholar 

  24. Saito S, Nakashima A, Myojo-Higuma S, Shiozaki A. The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy. J Reprod Immunol. 2008;77:14–22.

    Article  PubMed  Google Scholar 

  25. Hashii K, Fujiwara H, Yoshioka S, Kataoka N, Yamada S, Hirano T, Mori T, Fujii S, Maeda M. Peripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin-4 and interleukin-10 in corpus luteum function and differentiation. Hum Reprod. 1998;13:2738–44.

    Article  PubMed  CAS  Google Scholar 

  26. Nakayama T, Fujiwara H, Maeda M, Inoue T, Yoshioka S, Mori T, Fujii S. Human peripheral blood mononuclear cells (PBMC) in early pregnancy promote embryo invasion in vitro: HCG enhances the effects of PBMC. Hum Reprod. 2002;17:207–12.

    Article  PubMed  CAS  Google Scholar 

  27. Egawa H, Fujiwara H, Hirano T, Nakayama T, Higuchi T, Tatsumi K, Mori T, Fujii S. Peripheral blood mononuclear cells in early pregnancy promote invasion of human choriocarcinoma cell line, BeWo cells. Hum Reprod. 2002;17:473–80.

    Article  PubMed  Google Scholar 

  28. Yoshioka S, Fujiwara H, Nakayama T, Kosaka K, Mori T, Fujii S. Intrauterine administration of autologous peripheral blood mononuclear cells promotes implantation rates in patients with repeated failure of IVF-embryo transfer. Hum Reprod. 2006;21:3290–4.

    Article  PubMed  CAS  Google Scholar 

  29. Fujiwara H. Do circulating blood cells contribute to maternal tissue remodeling and embryo–maternal cross-talk around the implantation period? Mol Hum Reprod. 2009;15:335–43.

    Article  PubMed  CAS  Google Scholar 

  30. Ideta A, Sakai S, Nakamura Y, Urakawa M, Hayama K, Tsuchiya K, Fujiwara H, Aoyagi Y. Administration of peripheral blood mononuclear cells into the uterine horn to improve pregnancy rate following bovine embryo transfer. Anim Reprod Sci. 2010;117:18–23.

    Article  PubMed  CAS  Google Scholar 

  31. Bonduelle ML, Dodd R, Liebaers I, Van Steirteghem A, Williamson R, Akhurst R. Chorionic gonadotrophin-beta mRNA, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum Reprod. 1988;3:909–14.

    PubMed  CAS  Google Scholar 

  32. Lopata A, Hay DL. The potential of early human embryos to form blastocysts, hatch from their zona and secrete HCG in culture. Hum Reprod. 1989;4:87–94.

    PubMed  CAS  Google Scholar 

  33. Hoshina M, Boothby M, Hussa R, Pattillo R, Camel HM, Boime I. Linkage of human chorionic gonadotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis. Placenta. 1985;6:163–72.

    Article  PubMed  CAS  Google Scholar 

  34. Kosaka K, Fujiwara H, Tatsumi K, Yoshioka S, Sato Y, Egawa H, Higuchi T, Nakayama T, Ueda M, Maeda M, Fujii S. Human chorionic gonadotropin (HCG) activates monocytes to produce interleukin-8 via a different pathway from luteinizing hormone/HCG receptor system. J Clin Endocrinol Metab. 2002;87:5199–208.

    Article  PubMed  CAS  Google Scholar 

  35. Kane N, Kelly R, Saunders PT, Critchley HO. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150:2882–8.

    Article  PubMed  CAS  Google Scholar 

  36. Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, Alexander T, Taran A, Malfertheiner SF, Costa SD, Zimmermann G, Nitschke C, Volk HD, Alexander H, Gunzer M, Zenclussen AC. Human chorionic gonadotropin attracts regulatory T cells into the fetal–maternal interface during early human pregnancy. J Immunol. 2009;182:5488–897.

    Article  PubMed  CAS  Google Scholar 

  37. Wan H, Versnel MA, Cheung WY, Leenen PJ, Khan NA, Benner R, Kiekens RC. Chorionic gonadotropin can enhance innate immunity by stimulating macrophage function. J Leukoc Biol. 2007;82:926–33.

    Article  PubMed  CAS  Google Scholar 

  38. Emond V, Asselin E, Fortier MA, Murphy BD, Lambert RD. Interferon-tau stimulates granulocyte-macrophage colony-stimulating factor gene expression in bovine lymphocytes and endometrial stromal cells. Biol Reprod. 2000;62:1728–37.

    Article  PubMed  CAS  Google Scholar 

  39. Gifford CA, Assiri AM, Satterfield MC, Spencer TE, Ott TL. Receptor transporter protein 4 (RTP4) in endometrium, ovary, and peripheral blood leukocytes of pregnant and cyclic ewes. Biol Reprod. 2008;79:518–24.

    Article  PubMed  CAS  Google Scholar 

  40. Skopets B, Li J, Thatcher WW, Roberts RM, Hansen PJ. Inhibition of lymphocyte proliferation by bovine trophoblast protein-1 (type I trophoblast interferon) and bovine interferon-alpha I1. Vet Immunol Immunopathol. 1992;34:81–96.

    Article  PubMed  CAS  Google Scholar 

  41. Alexenko AP, Leaman DW, Li J, Roberts RM. The antiproliferative and antiviral activities of IFN-tau variants in human cells. J Interferon Cytokine Res. 1997;17:769–79.

    Article  PubMed  CAS  Google Scholar 

  42. Tuo W, Ott TL, Bazer FW. Natural killer cell activity of lymphocytes exposed to ovine, type I, trophoblast interferon. Am J Reprod Immunol. 1993;29:26–34.

    PubMed  CAS  Google Scholar 

  43. Tekin S, Hansen PJ. Natural killer-like cells in the sheep: functional characterization and regulation by pregnancy-associated proteins. Exp Biol Med (Maywood). 2002;227:803–11.

    CAS  Google Scholar 

  44. Nagaoka K, Nojima H, Watanabe F, Chang KT, Christenson RK, Sakai S, Imakawa K. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem. 2003;278:29048–56.

    Article  PubMed  CAS  Google Scholar 

  45. Imakawa K, Nagaoka K, Nojima H, Hara Y, Christenson RK. Changes in immune cell distribution and IL-10 production are regulated through endometrial IP-10 expression in the goat uterus. Am J Reprod Immunol. 2005;53:54–64.

    Article  PubMed  CAS  Google Scholar 

  46. Ott TL, Gifford CA. Effects of early conceptus signals on circulating immune cells: lessons from domestic ruminants. Am J Reprod Immunol. 2010;64:245–54.

    Article  PubMed  CAS  Google Scholar 

  47. Ideta A, Hayama K, Nakamura Y, Sakurai T, Tsuchiya K, Tanaka S, Yamaguchi T, Fujiwara H, Imakawa K, Aoyagi Y. Intrauterine administration of peripheral blood mononuclear cells enhances early development of the pre-implantation bovine embryo. Mol Reprod Dev. 2010;77:954–62.

    Article  PubMed  CAS  Google Scholar 

  48. Bauersachs S, Ulbrich SE, Gross K, Schmidt SE, Meyer HH, Wenigerkind H, Vermehren M, Sinowatz F, Blum H, Wolf E. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction. 2006;132:319–31.

    Article  PubMed  CAS  Google Scholar 

  49. Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics. 2010;11:474.

    Article  PubMed  Google Scholar 

  50. Chen Y, Antoniou E, Liu Z, Hearne LB, Roberts RM. A microarray analysis for genes regulated by interferon-tau in ovine luminal epithelial cells. Reproduction. 2007;134:123–35.

    Article  PubMed  CAS  Google Scholar 

  51. Mirando MA, Short EC Jr, Geisert RD, Vallet JL, Bazer FW. Stimulation of 2′,5′-oligoadenylate synthetase activity in sheep endometrium during pregnancy, by intrauterine infusion of ovine trophoblast protein-1, and by intramuscular administration of recombinant bovine interferon-alpha I1. J Reprod Fertil. 1991;93:599–607.

    Article  PubMed  CAS  Google Scholar 

  52. Schmitt RA, Geisert RD, Zavy MT, Short EC, Blair RM. Uterine cellular changes in 2′,5′-oligoadenylate synthetase during the bovine estrous cycle and early pregnancy. Biol Reprod. 1993;48:460–6.

    Article  PubMed  CAS  Google Scholar 

  53. Ott TL, Yin J, Wiley AA, Kim HT, Gerami-Naini B, Spencer TE, Bartol FF, Burghardt RC, Bazer FW. Effects of the estrous cycle and early pregnancy on uterine expression of Mx protein in sheep (Ovis aries). Biol Reprod. 1998;59:784–94.

    Article  PubMed  CAS  Google Scholar 

  54. Johnson GA, Burghardt RC, Newton GR, Bazer FW, Spencer TE. Development and characterization of immortalized ovine endometrial cell lines. Biol Reprod. 1999;61:1324–30.

    Article  PubMed  CAS  Google Scholar 

  55. Choi Y, Johnson GA, Burghardt RC, Berghman LR, Joyce MM, Taylor KM, Stewart MD, Bazer FW, Spencer TE. Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol Reprod. 2001;65:1038–49.

    Article  PubMed  CAS  Google Scholar 

  56. Choi Y, Johnson GA, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate major histocompatibility complex class I and beta2-microglobulin expression in the ovine uterus. Biol Reprod. 2003;68:1703–10.

    Article  PubMed  CAS  Google Scholar 

  57. Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol. 2008;8:179–211.

    PubMed  Google Scholar 

  58. Wintenberger-Torrés S, Fléchon JE. Ultrastructural evolution of the trophoblast cells of the pre-implantation sheep blastocyst from day 8 to day 18. J Anat. 1974;118:143–53.

    PubMed  Google Scholar 

  59. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ. Trophoblast l-selectin-mediated adhesion at the maternal–fetal interface. Science. 2003;299:405–8.

    Article  PubMed  CAS  Google Scholar 

  60. Dominguez F, Yáñez-Mó M, Sanchez-Madrid F, Simón C. Embryonic implantation and leukocyte transendothelial migration: different processes with similar players? FASEB J. 2005;19:1056–60.

    Article  PubMed  CAS  Google Scholar 

  61. Beauchamp JL, Croy BA. Assessment of expression of the receptor for colony-stimulating factor-1 (fms) in bovine trophoblast. Biol Reprod. 1991;45:811–7.

    Article  PubMed  CAS  Google Scholar 

  62. Imakawa K, Tamura K, McGuire WJ, Khan S, Harbison LA, Stanga JP, Helmer SD, Christenson RK. Effect of interleukin-3 on ovine trophoblast interferon during early conceptus development. Endocr J. 1995;3:511–7.

    Article  CAS  Google Scholar 

  63. Imakawa K, Carlson KD, McGuire WJ, Christenson RK, Taylor A. Enhancement of ovine trophoblast interferon by granulocyte macrophage-colony stimulating factor: possible involvement of protein kinase C. J Mol Endocrinol. 1997;19:121–30.

    Article  PubMed  CAS  Google Scholar 

  64. Mathialagan N, Bixby JA, Roberts RM. Expression of interleukin-6 in porcine, ovine, and bovine preimplantation conceptuses. Mol Reprod Dev. 1992;32:324–30.

    Article  PubMed  CAS  Google Scholar 

  65. Guilbert L, Robertson SA, Wegmann TG. The trophoblast as an integral component of macrophage–cytokine network. Immunol Cell Biol. 1993;71:49–57.

    Article  PubMed  CAS  Google Scholar 

  66. Paula-Lopes FF, de Moraes AA, Edwards JL, Justice JE, Hansen PJ. Regulation of preimplantation development of bovine embryos by interleukin-1beta. Biol Reprod. 1998;59:1406–12.

    Article  PubMed  CAS  Google Scholar 

  67. Bai H, Sakurai T, Konno T, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Expression of GATA1 in ovine conceptus and endometrium during the peri-attachment period. Mol Reprod Dev. 2012;79:64–73. doi:10.1002/mrd.21409.

    Google Scholar 

  68. Imakawa K, Tamura K, Lee RS, Ji Y, Kogo H, Sakai S, Christenson RK. Temporal expression of type I interferon receptor in the peri-implantation ovine extra-embryonic membranes: demonstration that human IFNalpha can bind to this receptor. Endocr J. 2002;49:195–205.

    Article  PubMed  CAS  Google Scholar 

  69. Pontzer CH, Torres BA, Vallet JL, Bazer FW, Johnson HM. Antiviral activity of the pregnancy recognition hormone ovine trophoblast protein-1. Biochem Biophys Res Commun. 1988;152:801–7.

    Article  PubMed  CAS  Google Scholar 

  70. Pontzer CH, Bazer FW, Johnson HM. Antiproliferative activity of a pregnancy recognition hormone, ovine trophoblast protein-1. Cancer Res. 1991;51:5304–7.

    PubMed  CAS  Google Scholar 

  71. Roberts RM. Conceptus interferons and maternal recognition of pregnancy. Biol Reprod. 1989;40:449–52.

    Article  PubMed  CAS  Google Scholar 

  72. Subramaniam PS, Khan SA, Pontzer CH, Johnson HM. Differential recognition of the type I interferon receptor by interferons tau and alpha is responsible for their disparate cytotoxicities. Proc Natl Acad Sci USA. 1995;92:12270–4.

    Article  PubMed  CAS  Google Scholar 

  73. Cross JC, Roberts RM. Constitutive and trophoblast-specific expression of a class of bovine interferon genes. Proc Natl Acad Sci USA. 1991;88:3817–21.

    Article  PubMed  CAS  Google Scholar 

  74. Farin CE, Cross JC, Tindle NA, Murphy CN, Farin PW, Roberts RM. Induction of trophoblastic interferon expression in ovine blastocysts after treatment with double-stranded RNA. Interferon Res. 1991;1:151–7.

    Article  Google Scholar 

  75. Ezashi T, Ealy AD, Ostrowski MC, Roberts RM. Control of interferon τ gene expression by Ets-2. Proc Natl Acad Sci USA. 1998;95:7882–7.

    Article  PubMed  CAS  Google Scholar 

  76. Ezashi T, Ghosh D, Roberts RM. Repression of Ets-2-induced transactivation of the tau interferon promoter by Oct-4. Mol Cell Biol. 2001;21:7883–91.

    Article  PubMed  CAS  Google Scholar 

  77. Yamaguchi H, Ikeda Y, Moreno JI, Katsumura M, Miyazawa T, Takahashi E, Imakawa K, Sakai S, Christenson RK. Identification of a functional transcription factor AP-1 site in the sheep interferon τ gene that mediates a response to PMA in JEG3 cells. Biochem J. 1990;340:767–73.

    Article  Google Scholar 

  78. Imakawa K, Kim M-S, Matsuda-Minehata F, Ishida S, Iizuka M, Suzuki M, Chang K-T, Echternkamp SE, Christenson RK. Regulation of the ovine interferon-tau gene by a trophoblast-specific transcription factor, Cdx2. Mol Reprod Dev. 2006;73:559–67.

    Article  PubMed  CAS  Google Scholar 

  79. Sakurai T, Sakamoto A, Muroi Y, Bai H, Nagaoka K, Tamura K, Takahashi T, Hashizume K, Sakatani M, Takahashi M, Godkin JD, Imakawa K. Induction of endogenous tau interferon gene transcription by CDX2 and high acetylation in bovine non-trophoblast cells. Biol Reprod. 2009;6:1223–31.

    Article  Google Scholar 

  80. Ezashi T, Das P, Gupta R, Walker A, Roberts RM. The role of homeobox protein distal-less 3 and its interaction with ETS2 in regulating bovine interferon-tau gene expression–synergistic transcriptional activation with ETS2. Biol Reprod. 2008;79:115–24.

    Article  PubMed  CAS  Google Scholar 

  81. Bai H, Sakurai T, Kim M-S, Muroi Y, Ideta A, Aoyagi Y, Nakajima H, Takahashi M, Nagaoka K, Imakawa K. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription. Mol Reprod Dev. 2009;76:1143–52.

    Article  PubMed  CAS  Google Scholar 

  82. Bai H, Sakurai T, Someya Y, Konno T, Ideta A, Aoyagi Y, Imakawa K. Regulation of trophoblast-specific factors by GATA2 and GATA3 in bovine trophoblast CT-1 cells. J Reprod Dev. 2011;57:518–25.

    Article  PubMed  CAS  Google Scholar 

  83. Xu N, Takahashi Y, Matsuda F, Sakai S, Christenson RK, Imakawa K. Coactivator CBP in the regulation of conceptus IFNt gene transcription. Mol Reprod Dev. 2003;65:23–9.

    Article  PubMed  CAS  Google Scholar 

  84. Das P, Ezashi T, Gupta R, Roberts RM. Combinatorial roles of protein kinase A Ets2, and 3′,5′-cyclic-adenosine monophosphate response element-binding protein-binding protein/p300 in the transcriptional control of interferon-tau expression in a trophoblast cell line. Mol Endocrinol. 2008;22:331–43.

    Article  PubMed  CAS  Google Scholar 

  85. Nojima H, Nagaoka K, Christenson RK, Shiota K, Imakawa K. Increase in DNA methylation downregulates conceptus interferon-tau gene expression. Mol Reprod Dev. 2004;67:396–405.

    Article  PubMed  CAS  Google Scholar 

  86. Sakurai T, Bai H, Konno T, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Function of a transcription factor CDX2 beyond its trophectoderm lineage specification. Endocrinology. 2010;151:5873–81.

    Article  PubMed  CAS  Google Scholar 

  87. Novakovic B, Rakyan V, Ng HK, Manuelpillai U, Dewi C, Wong NC, Morley R, Down T, Beck S, Craig JM, Saffery R. Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Mol Hum Reprod. 2008;14:547–54.

    Article  PubMed  CAS  Google Scholar 

  88. Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S. GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem. 2009;284:28729–37.

    Article  PubMed  CAS  Google Scholar 

  89. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development. 2010;137:395–403.

    Article  PubMed  CAS  Google Scholar 

  90. Guillomot M. Cellular interactions during implantation in domestic ruminants. J Reprod Fertil Suppl. 1995;49:39–51.

    PubMed  CAS  Google Scholar 

  91. Chang MC. Development of bovine blastocyst with a note on implantation. Anat Rec. 1952;113:143–61.

    Article  PubMed  CAS  Google Scholar 

  92. Greenstain JS, Murray RW, Foley RC. Observations on the morphogenesis and histochemistry of the bovine preattachment placenta between 16 and 33 days of gestation. Anat Rec. 1958;132:321–41.

    Article  Google Scholar 

  93. Hansen PJ. Medawar redux—an overview on the use of farm animal models to elucidate principles of reproductive immunology. Am J Reprod Immunol. 2010;64:225–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Robert Moriarty for his critical reading of the manuscript. We also thank the following scientists who contributed to a series of these investigations at early stages: Drs. Kazuyoshi Hashizume, Toru Takahashi, Hitomi Takahashi, and Masashi Takahashi. This work was supported by a grant from the Program for Promotion of Basic Research Activities for Innovative Bioscience (BRAIN) to K.I. This work was also supported by a Grant-in-Aid for Scientific Research (23780002) to T.S. H.B. was supported as a Research Fellow of the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Imakawa.

About this article

Cite this article

Bai, H., Sakurai, T., Fujiwara, H. et al. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod Med Biol 11, 109–116 (2012). https://doi.org/10.1007/s12522-011-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-011-0117-2

Keywords

Navigation