Skip to main content

Advertisement

Log in

Gonadotropin stimulation: past, present and future

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

Gonadotropin therapy is so central to infertility treatment that it is easy to overlook the considerable discovery and research that preceded production of the effective and safe products available today. The history underpinning this development spans over 300 years and provides a splendid example of how basic animal experimentation and technological advances have progressed to clinical application. Following the discovery of germ cells in 1677 and realizing, in 1870, that fertilization involved the merging of two cell nuclei, one from the egg and one from sperm, it took another 40 years to discover the interplay between hypothalamus, pituitary and gonads. The potential roles of gonadotropin regulation were discovered in 1927. Gonadotropin, such as pregnant mare serum gonadotropin (PMSG), was first introduced for ovarian stimulation in 1930. However, use of PMSG leads to antibody formation, and had to be withdrawn. Following withdrawal of PMSG, human pituitary gonadotropin (HPG) and urinary menopausal gonadotropin (hMG) appeared on the market, and 50 years ago the first child was delivered by our group in 1961 and opened the path to controlled ovarian stimulation. HPG produced good results, but its use came to an end in the late 1980s when it was linked to the development of Creutzfeldt–Jakob disease (CJD). HMG preparations containing a high percentage of unknown urinary proteins, making quality control almost impossible, were then the only gonadotropins remaining on the market. With the availability of hMG, clomiphene citrate, ergot derivatives, GnRH agonists and antagonists, as well as metformin, algorithms were developed for their optimal utilization and were used for the next four decades. Following the first human IVF baby in 1978 and ICSI in 1991, such procedures became standard practice. The main agents for controlled ovarian stimulation for IVF were gonadotropins and GnRH analogues, with batch to batch consistent gonadotropic preparations; methods could be developed to predict and select the correct dose and the optimal protocol for each patient. We are now seeing the appearance of gonadotropin with sustained action and orally active GnRH analogues as well as orally active molecules capable to stimulate follicle growth and inducing ovulation. These new developments may one day remove the need for the classical gonadotropin in clinical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vesalius, A. De humani corporis fabrica libri septem . Basileae [Basel]: Ex officina Joannis Oporini; 1543.

  2. Fallopius, G. Observationes anatomicae, Venise; 1561.

  3. De Graaf, R. De Mullerium Organis. Paris; 1672.

  4. Sims HM. Sterility and the value of microscope in its diagnosis and treatment, vol 13. Boston: Trans Am Gynecol Soc; 1888.

    Google Scholar 

  5. Soma K. Testosterone and aggression: berthold, birds and beyond. J Neuroendocrinol. 2006;19:543–51.

    Article  Google Scholar 

  6. Gregory R. The gastrointestinal hormones: a review of recent advances. J Physiol. 1974;241:1–32.

    PubMed  CAS  Google Scholar 

  7. Huhner M. The diagnosis and treatment of sexual disorders in the male and female. Philadelphia: Davis; 1937.

    Google Scholar 

  8. Rubin IC. Non-operative determination of the patency of Fallopian tubes in sterility. JAMA. 1920;74:1017.

    Article  Google Scholar 

  9. Crowe SJ, Cushing H, Homans J. Experimental hypophysectomy. Bull Johns Hopkins Hosp. 1910;21:127–67.

    Google Scholar 

  10. Aschner B. Ueber die Beziehung zwischen Hypophysis und Genitale. Arch Gynäkol. 1912;97:200–27.

    Article  Google Scholar 

  11. Smith PE. Hastening of development of female genital system by daily hemoplastic pituitary transplants. Proc Soc Exp Biol Med. 1926;24:1311–33.

    Google Scholar 

  12. Smith PE, Engle ET. Experimental evidence of the role of anterior pituitary in development and regulation of gonads. Am J Anat. 1927;40:159.

    Article  Google Scholar 

  13. Zondek B. Ueber die Funktion des Ovariums. Zeitschr Geburtsh Gynäkol. 1926;90:327.

    Google Scholar 

  14. Smith PE. The disabilities caused by hypophysectomy and their repair. JAMA. 1927;88:158–61.

    Article  CAS  Google Scholar 

  15. Smith PE. Hypophysectomy and replacement therapy in the rat. Am J Anat. 1930;45:205–74.

    Article  Google Scholar 

  16. Zondek B. Weitere Untersuchungen zur Darstellung, Biologie und Klinik des Hypophysenvorderlappenhormones (Prolan). Zentralblatt für Gynäkologie. 1929;14:834–48.

    Google Scholar 

  17. Ascheim S, Zondek B. Hypophysenvorderlappenhormone und Ovarialhormone im Harn von Schwangeren. Klin Wochenschr. 1927;6:13–21.

    Article  Google Scholar 

  18. Seegar-Jones GE, Gey GO, Ghisletta M. Hormone production by placental cells maintained in continuous culture. Bull Johns Hopkins Hosp. 1943;72:26–38.

    Google Scholar 

  19. Tausk M. Organon. De geschiedenis van een bijzondere Nederlandse onderneming. In: Nijmegen: Dekker, Van de Vegt; 1978.

  20. Cole HH, Hart GH. The potency of blood serum of mares in progressive stages of pregnancy in affecting the sexual maturity of the immature rat. Am J Physiol. 1930;93:57.

    CAS  Google Scholar 

  21. Fevold HL. The gonadotropic hormones. Cold Spring Harbor Symp (Quantitative Biology). 1937;5:93.

    CAS  Google Scholar 

  22. Hamblen EC. Results of preoperative administration of extract of pregnancy urine: study of ovaries and endometria in hyperplasia of endometrium following such administration. Endocrinology. 1935;19:169–78.

    Article  Google Scholar 

  23. Hamblen EC. Clinical evaluation of ovarian responses to gonadotropic therapy. Endocrinology. 1939;24:848–57.

    Article  Google Scholar 

  24. Mazer C, Ravetz E. The effect of combined administration of chorionic gonadotropin and the pituitary synergist on the human ovary. Am J Obstet Gynaecol. 1941;41:474–588.

    CAS  Google Scholar 

  25. Hamblen EC, Davis CD, Durham NC. Treatment of hypo-ovarianism by the sequential and cyclic administration of equine and chorionic gonadotropins—socalled one–two cylic gonadotropic therapy. Summary of 5 years’ results. Am J Obstet Gynecol. 1945;50:137–46.

    Google Scholar 

  26. Ostergaard E. Antigonadotrophic substances. Copenhagen: Ejnar Munksgaard; 1942.

    Google Scholar 

  27. Zondek B, Sulman F. The antigonadotropic factor. Baltimore: Williams & Wilkins; 1942. p. 1–185.

  28. Leathem JH, Rakoff A. Gonadotrophic hormone therapy in man complicated by antihormone formation. Am J Obstet Gynecol. 1948;56(3):521–6.

    PubMed  CAS  Google Scholar 

  29. Borth R, Lunenfeld B, de Watteville H. Activité gonadotrope d’un extrait d’urines de femmes en menopause. Experientia. 1954;10:266–70.

    Article  PubMed  CAS  Google Scholar 

  30. Lunenfeld B, Menzi A, Volet B. Clinical effects of human post-menopausal gonadotropin. In: Fuchs F, editor. Advance abstracts of short communications, 1st International Congress of Endocrinology (Copenhagen 1960).

  31. Lunenfeld B, Rabau E, Rumney G, Winkelsberg G. The responsiveness of the human ovary to gonadotropin (Hypophysis III). Proc Third World Cong Gynecol Obstet (Vienna). 1961;1:22.

    Google Scholar 

  32. Lunenfeld B, Sulimovici S, Rabau E. Les effets des gonadotrophins urinaires des femmes menopausees sur l’ovaire humain. CR Soc Franc Gynecol. 1962;32/5:291.

    Google Scholar 

  33. Lunenfeld B, Sulimovici S, Rabau E, Eshkol A. L’induction de l’ovulation dans les amenorrheas hypophysaires par un traitement combiné de gonadotropins urinaires menopausiques et de gonadotropins chorioniques. CR Soc Franc Gynecol. 1962;32/5:346.

    Google Scholar 

  34. Lunenfeld B. Treatment of anovulation by human gonadotropins. J Int Fed Gynecol Obstet. 1963;1:15.

    Google Scholar 

  35. Palmer R, Dorangeon P. Les gonadotropines dans les traitements de la stérilité féminine. CR Soc Franc Gynecol. 1962;32:407–15.

    Google Scholar 

  36. Salomon Y, Netter A. Traitement de l’anovulation par les gonadotrophines humaines. In: Gazette Medicale de France; 1965, t.72. p. 3.615–28.

  37. Rosenberg E, Coleman J, Damani M, Garcia CR. Clinical effect of post menopausal gonadotropin. Clin Endocrinol Metab. 1962;23:181–9.

    Google Scholar 

  38. Taymor ML, Sturgis SH, Lieberman BL, Goldstein DP. Induction of ovulation with human postmenopausal gonadotropin. I. Case selection and results of therapy. Fertil Steril. 1966;17:731–5.

    PubMed  CAS  Google Scholar 

  39. Tanaka Y. Combined effect of HMG and HCG on ovulaton. Sanfujinka No Jissai. 1969;18:314–9. (statistical reports in Japan).

    PubMed  CAS  Google Scholar 

  40. WHO. Expert Committee on biological Standardization (Chair B. Lunenfeld), vol 565. Technical Report Series. Geneva: World Health Organization, 1972; p. 56–7.

  41. WHO Expert Committee. Agents stimulating gonadal function in human (Chair B. Lunenfeld). Technical Report Series. Geneva: World Health Organization; 1973.

  42. Eshkol A, Lunenfeld B. Purification and separation of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from human menopausal gonadotropin (HMG). Part III. Acta Endocrinol. 1967;54:919.

    Google Scholar 

  43. Lunenfeld B, Eshkol A. Immunology of follicle stimulating hormone and luteinizing hormone. Vitam Horm. 1970;27:131–59.

    Article  Google Scholar 

  44. Gemzell CA, Diczfalusy E, Tillinger G. Clinical effect of human pituitary follicle stimulating hormone (FSH). J Clin Endocrinol Metab. 1958;18:1333.

    Article  PubMed  CAS  Google Scholar 

  45. Dumble LD, Klein RD. Creutzfeld–Jakob disease legacy for Australian women treated with human pituitary gonadotropins. Lancet. 1992;330:848.

    Google Scholar 

  46. Cochius JI, Mack K, Burns RJ. Creutzfeld–Jakob disease in a recipient human pituitary derived gonadotropin. Aust NZ J Med. 1990;20:592.

    Article  CAS  Google Scholar 

  47. Pincus G, Enzmann EV. Can mammalian eggs undergo normal development in vitro? Proc Natl Acad Sci USA. 1934;20(2):121–2.

    Article  PubMed  CAS  Google Scholar 

  48. Rock J, Menkin MF. In vitro fertilization and cleavage of human ovarian eggs. Science. 1944;100(2588):105–7.

    Article  PubMed  CAS  Google Scholar 

  49. Dauzier L, Thibault C, Wintenberger S. Fecundation in vitro of rabbit egg. C R Hebd Seances Acad Sci. 1954;238(7):844–5.

    PubMed  CAS  Google Scholar 

  50. Chang Mc. Fertilization of rabbit ova in vitro. Nature. 1959; 184(Suppl 7):466–7.

    Google Scholar 

  51. Shettles LB. Human blastocyst grown in vitro in ovulation cervical mucus. Nature. 1971;229(5283):343.

    Article  PubMed  CAS  Google Scholar 

  52. de Kretzer D, Dennis P, Hudson B, Leeton J, Lopata A, Outch K, Talbot J, Wood C. Transfer of a human zygote. Lancet. 1973;2(7831):728–9.

    Article  PubMed  Google Scholar 

  53. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    Article  PubMed  CAS  Google Scholar 

  54. Jones GS, Andrews MC, Acosta A, et al. The program for in vitro fertilization at Norfolk. Fertil Steril. 1982;38(1):14–21. Jul.

    PubMed  Google Scholar 

  55. Trounson AO, Leeton JF, Wood C, Webb J, Wood J. Pregnancies in humans by fertilization in vitro and embryo transfer in the controlled ovulatory cycle. Science. 1981;212(4495):681–2. May 8.

    Article  PubMed  CAS  Google Scholar 

  56. Fleming R, Jamieson ME, Hamilton MP, Black WP, Macnaughton MC, Coutts JR. The use of GnRH analogues in combination with exogenous gonadotropins in infertile women. Acta Endocrinol Suppl (Copenh). 1988;288:77–84.

    CAS  Google Scholar 

  57. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  PubMed  CAS  Google Scholar 

  58. Massone R Urine collection and processing, a 40 year experience 2011 10th International symposium on GnRH. http://www.kenes.com/gnrh.

  59. Shaked GM, Shaked Y, Jaruv-Inbal A, et al. A proteaseresistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J of Biol Chem. 2001;276:1479–82.

    Article  Google Scholar 

  60. Van Dorsselaer A, Carapito C, Delalande F, Schaeffer-Reiss C, Thierse D, Diemer H, McNair DS, Krewski D, Cashman NR. Detection of prion protein in urine-derived injectable fertility products by a targeted proteomic approach. PLoS One. 2011;6(3):17815.

    Article  Google Scholar 

  61. Rathnam P, Saxena B. Primary amino acid sequence of folliclestimulating hormone from human pituitary glands I alpha subunit. J Biol Chem. 1975;250:6735–46.

    PubMed  CAS  Google Scholar 

  62. Saxena BB, Rathnam P. Amino acid sequence of the beta subunit of follicle-stimulating hormone from human pituitary glands. J Biol Chem. 1976;251:993–1005.

    PubMed  CAS  Google Scholar 

  63. Howles CM. Genetic engineering of human FSH (Gonal-F). Hum Reprod Update. 1996;2(2):172–91.

    Article  PubMed  CAS  Google Scholar 

  64. Olijve W, de Boer W, Mulders JW, van Wezenbeek PM. Molecular biology and biochemistry of human recombinant follicle stimulating hormone (Puregon). Mol Hum Reprod. 1996;2(5):371–82.

    Article  PubMed  CAS  Google Scholar 

  65. Olijve W, de Boer W, Mulders JW, van Wezenbeek PM. Molecular biology and biochemistry of human recombinant follicle stimulating hormone (Puregon). Mol Hum Reprod. 1996;2(5):371–82.

    Article  PubMed  CAS  Google Scholar 

  66. Driebergen R, Baer G. Quantification of follicle stimulating hormone (follitropin alfa): is in vivo bioassay still relevant in the recombinant age? Curr Med Res Opin. 2003;19(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  67. Hugues J-N, Barlow DH, Rosenwaks Z, et al. Improvement in consistency of response to ovarian stimulation with recombinant human follicle stimulating hormone resulting from a new method for calibrating the therapeutic preparation. Reprod Biomed Online. 2003;6:185–90.

    Article  PubMed  CAS  Google Scholar 

  68. Devroey P, Van Steirteghem A, Van Mannaerts A, Coelingh Bennink H. Successful in vitro fertilization and embryo transfer after treatment with recombinant human FSH. Lancet. 1992;339:1170–1.

    Article  PubMed  CAS  Google Scholar 

  69. Germond M, Dessole S, Senn A, et al. Successful in vitro fertilization and embryo transfer after treatment with recombinant human FSH. Lancet. 1992;339:1170.

    Article  PubMed  CAS  Google Scholar 

  70. Out HJ, Mannaerts BMJL, Driessen SGAJ, et al. A prospective, randomized, assessor-blind, multicentre study comparing recombinant and urinary follicle-stimulating hormone (Puregon versus Metrodin) in in vitro fertilization. Hum Reprod. 1995;10:2534–40.

    PubMed  CAS  Google Scholar 

  71. Agrawal R, West C, Conway GS, Page ML, Jacobs HS. Pregnancy after treatment with three recombinant gonadotropins. Lancet. 1997;349:29–30.

    Article  PubMed  CAS  Google Scholar 

  72. Donderwinkel PFJ, Schoot DC, Coelingh I, Bennink HJT, Fauser CJM. Pregnancy after induction of ovulation with recombinant human FSH in polycystic ovary syndrome. Lancet. 2002;340:983.

    Article  Google Scholar 

  73. Lehert P, Schertz JC, Ezcurra D. Recombinant human follicle-stimulating hormone produces more oocytes with a lower total dose per cycle in assisted reproductive technologies compared with highly purified human menopausal gonadotrophin: a meta-analysis. Reprod Biol Endocrinol. 2010;16(8):112.

    Article  Google Scholar 

  74. Kaufmann R, Dunn R, Vaughn T, Hughes G, O’Brien F, Hemsey G, Thomson B, O’Dea LS. Recombinant human luteinizing hormone, lutropin alfa, for the induction of follicular development and pregnancy in profoundly gonadotrophin-deficient women. Clin Endocrinol (Oxf). 2007;67:563–9.

    CAS  Google Scholar 

  75. O’Dea L, O’Brien F, Currie K, Hemsey G. Follicular development induced by recombinant luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anovulatory women with LH and FSH deficiency: evidence of a threshold effect. Curr Med Res Opin. 2008;24:2785–93.

    Article  PubMed  Google Scholar 

  76. Bühler K, Naether O. A 2:1 formulation of follitropin alfa and lutropin alfa in routine clinical practice: a large, multicentre, observational study. Gynecol Endocrinol. 2010 (Epub ahead of print). PMID: 20849209.

  77. Boime I, Keene J, Galway AB, Fares FM. Expression of recombinant human FSH LH and CG in mammalian cells, a structure-function model for therapeutic drug design. Semin Reprod Endocrinol. 1990;10:45–50.

    Article  Google Scholar 

  78. Devroey P, Koper N, Mannaerts B. A randomized, dose-finding trial to establish the ovarian response to a single injection of Org 36286 for sustained follicular stimulation. Abstracts of the 22nd Annual Meeting of the ESHRE, Prague, Czech Republic, 18–21 June 2006. Free Communication. Session 45—ART—Ovarian stimulation. O-172; 2006.

  79. Beckers NGM, Macklon NS, Devroey P, Platteau P, Boerrigter PJ, Fauser BCJM. First live birth after ovarian stimulation using a chimeric long-acting human recombinant follicle-stimulating hormone (FSH) agonist (recFSH-CTP) for in vitro fertilization. Fertil Steril. 2003;79:621–3.

    Article  PubMed  Google Scholar 

  80. The Corifollitropin Alfa Dose-finding Study Group. A randomized dose–response 482 trial of a single injection of corifollitropin alfa to sustain multifollicular growth 483 during controlled ovarian stimulation. Hum Reprod. 2008;23:2484–92.

    Google Scholar 

  81. de Greef R, Zandvliet AS, de Haan AF, Ijzerman-Boon PC, Marintcheva-Petrova M, Mannaerts BM. Dose selection of corifollitropin alfa by modeling and simulation in controlled ovarian stimulation. Clin Pharmacol Ther. 2010;88(1):79–87.

    Article  PubMed  Google Scholar 

  82. Devroey P, Boostanfar R, Koper N, Mannaerts B, IJzerman-Boon P, Fauser B. ENGAGE investigators. A double-blind, non-inferiority RCT comparing corifollitropin alfa and recombinant FSH during the first seven days of ovarian stimulation using a GnRH antagonist protocol. Hum Reprod. 2009;24(12):3063–72.

    Article  PubMed  CAS  Google Scholar 

  83. Mannaerts B. The corifollitropin alpha ENSURE study group. Corifollitropin alfa for ovarian stimulation in IVF: a randomized trial in lower-body-weight women. Reproductive Biomed Online. 2010;21(1):66–76.

    Article  Google Scholar 

  84. Fatemi HM, Oberyé J, Popovic-Todorovic B, Witjes H, Mannaerts B, Devroey P. Corifollitropin alfa in a long GnRH agonist protocol: proof of concept trial. Fertil Steril. 2010;94(5):1922–4.

    Article  PubMed  CAS  Google Scholar 

  85. Arey BJ, Deecher DC, Shen ES, Stevis PE, Meade EH, Wrobel J, Frail DE, Lopez FJ. Identification and characterization of a selective, nonpeptide follicle-stimulating hormone receptor antagonist. Endocrinology. 2002;143:3822–9.

    Article  PubMed  CAS  Google Scholar 

  86. Guo T, Adang AE, Dolle RE, Dong G, Fitzpatrick D, Geng P, Ho KK, Kultgen SG, Liu R, McDonald E, et al. Small molecule biaryl FSH receptor agonists. Part 2. Lead optimization via parallel synthesis. Bioorg Med Chem Lett. 2004;14:1717–20.

    Article  PubMed  CAS  Google Scholar 

  87. Maclean D, Holden F, Davis AM, Scheuerman RA, Yanofsky S, Holmes CP, Fitch WL, Tsutsui K, Barrett RW, Gallop MA. Agonists of the follicle stimulating hormone receptor from an encoded thiazolidinone library. J Comb Chem. 2004;6:196–206.

    Article  PubMed  CAS  Google Scholar 

  88. Yanofsky SD, Shen ES, Holden F, Whitehorn E, Aguilar B, Tate E, Holmes CP, Scheuerman R, MacLean D, Wu MM, et al. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists. J Biol Chem. 2006;281:13226–33.

    Article  PubMed  CAS  Google Scholar 

  89. van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RGJM. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod. 2009;24:640–8.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lunenfeld.

Additional information

Tables 1, 2 and 3 are taken from an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

About this article

Cite this article

Lunenfeld, B. Gonadotropin stimulation: past, present and future. Reprod Med Biol 11, 11–25 (2012). https://doi.org/10.1007/s12522-011-0097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-011-0097-2

Keywords

Navigation