Skip to main content
Log in

Pigments—Iron-based red, yellow, and brown ochres

  • Review
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Natural Fe-bearing ochres ranging in color from yellow to deep red and brown abound on earth’s crust. Quite often, ochres can be used for pigmenting purposes upon little or no processing, and, hence, the pertinent materials have been widely employed for decorative and artistic purposes since the dawn of prehistory; ochres have also found medicinal applications. This paper offers an overview regarding the range and composition of the available natural ochre pigments, their origin, properties, and potential processing. In addition, the production and processing of artificial ochres is presented. The prevailing analytical techniques currently employed in ochres’ identification and provenancing are also discussed, and guidelines for good practice are provided. Finally, authors offer some insight on ochres’ potential applications and their limitations, while a discussion pertaining to ochres in the Greco-Roman world is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable as no new data were created or analyzed in this study.

Code availability

Not applicable.

Notes

  1. Empedocles’ work is referenced according to its standard edition by Diels–Kranz 1951, 308–374 (DK 31).

  2. In order to highlight various aspects related to ochres, authors have occasionally incorporated results deriving from their own research. This is the case of the SEM–EDX analyses/images presented in Figs. 3, 5, 6, 8, 9, and 11, the μ-Raman spectra shown in Fig. 10, and the XRF data shown in Fig. 7. The relevant methodological details are provided in Appendix 2.

  3. In fact the low energy photons are absorbed by atmospheric air. A way out of this problem is the target excitation in vacuum or in helium flow.

  4. Experimental details are provided in Appendix 2.

  5. Spectra collected by the authors. For experimental details, see Appendix 2.

  6. Analyses conducted by the authors. The experimental details are provided in Appendix 2.

References

  • Aceto M et al (2012) First analytical evidences of precious colourants on Mediterranean illuminated manuscripts. Spectrochim Acta A Mol Biomol Spectrosc 95:235–245

    Google Scholar 

  • Aceto M (2021) The palette of organic colourants in wall paintings. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01392-3

    Article  Google Scholar 

  • Adriaens A, Dowsett MG (2004) Electron microscopy and its role in cultural heritage studies. In: Janssens K, Van Grieken R (ed) Comprehensive analytical chemistry XLII, Chapter 3. Elsevier, pp 73–128

  • Agresti G et al (2016) Yellow pigments based on lead, tin, and antimony: ancient recipes, synthesis, characterization, and hue choice in artworks. Color Res Appl 41(3):226–231

    Google Scholar 

  • Ajò D et al (2004) Ciro Ferri’s frescoes: a study of painting materials and technique by SEM-EDS microscopy, X-ray diffraction, micro FT-IR and photoluminescence spectroscopy. J Cult Herit 5:333–348

    Google Scholar 

  • Aliatis I et al (2010) Pigments used in Roman wall paintings in the Vesuvian area. J Raman Spectrosc 41:1537–1542

    Google Scholar 

  • Aloupi-Siotis E (2020) Ceramic technology: how to characterize black Fe-based glass-ceramic coatings. Archaeol Anthropol Sci 12(191):1–15

    Google Scholar 

  • Arizzi A, Cultrone G (2021) Mortars and plasters – how to characterise hydraulic mortars. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01404-2

    Article  Google Scholar 

  • Balek V, Šubrt J (1995) Thermal behavior of iron(III) oxide hydroxides. Pure Appl Chem 67(11):1839–1842

    Google Scholar 

  • Barata C et al (2015) Synchrotron X-ray diffraction of bole layers from Portuguese gilded baroque retables. Appl Clay Sci 116–117:39–45

    Google Scholar 

  • Basciano LC, Peterson RC (2007) Jarosite-hydronium jarosite solid-solution series with full iron site occupancy: mineralogy and crystal chemistry. Am Miner 92:1464–1473

    Google Scholar 

  • Beck L et al (2011) PIXE characterisation of prehistoric pigments from Abri Pataud (Dordogne, France). X-Ray Spectrom 40:219–223

    Google Scholar 

  • Becker H (2021) Pigment nomenclature in the ancient Near East, Greece, and Rome. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01394-1

    Article  Google Scholar 

  • Beckhoff B et al (eds) (2006) Handbook of practical X-ray fluorescence analysis. Springer, Berlin

    Google Scholar 

  • Bell IM et al (1997) Raman spectroscopic library of natural and synthetic pigments (pre-∼ 1850 AD). Spectrochim Acta A Mol Biomol Spectrosc 53(12):2159–2179

    Google Scholar 

  • Bernardino NDE et al (2014) Effect of MnO2 and α-Fe2O3 on organic binders degradation investigated by Raman spectroscopy. Vibrational Spectroscopy 70:70–77

  • Bersani D et al (1999) Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc 30(5):335–360

    Google Scholar 

  • Bikiaris D et al (1999) Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim Acta A Mol 56:3–18

    Google Scholar 

  • Bimson M (1980) Cosmetic pigments from the ‘Royal Cemetery’ at Ur. Iraq 42:75–77

    Google Scholar 

  • Biron C et al (2020) A blue can conceal another! Noninvasive multispectroscopic analyses of mixtures of indigo and Prussian blue. Color Res Appl 45(2):262–274

    Google Scholar 

  • Bitossi G et al (2005) 2005, ‘Spectroscopic techniques in cultural heritage conservation: a survey.’ Appl Spectrosc Rev 40:187–228

    Google Scholar 

  • Bonneau A et al (2012) A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archaeol Sci 39(2):287–294

    Google Scholar 

  • Botto A et al (2019) Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review. J Anal at Spectrom 34(1):81–103

    Google Scholar 

  • Broecke L (2015) Cennino Cennini’s Il libro dell’arte. Archetype publications, London

    Google Scholar 

  • Bu K et al (2013) The source of iron-oxide pigments used in Pecos river style rock paints. Archaeometry 55(6):1088–1100

    Google Scholar 

  • Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A Mol Biomol Spectrosc 57(7):1491–1521

    Google Scholar 

  • Burgio L et al (2001) Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy. Spectrochim Acta Part B At Spectrosc 56(6):905–913

    Google Scholar 

  • Burgio L (2021) Pigments, dyes and inks – their analysis on manuscripts, scrolls and papyri. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01403-3

    Article  Google Scholar 

  • Buxbaum G, Pfaff G (eds) (2005) Industrial inorganic pigments. Wiley-VCH, Weinheim

    Google Scholar 

  • Caley ER, Richards JC (1956) Theophrastus, On stones: a modern edition with Greek text, translation, introduction and commentary. Columbus, Ohio 

  • Calligaro T et al (2004) Ion beam microanalysis. In: Janssens K, Van Grieken R (eds) Comprehensive analytical chemistry XLII, Chapter 5. Elsevier, pp. 227–276

  • Caroselli M, Ruffolo SA, Piqué F (2021) Mortars and plasters – how to manage mortars and plasters conservation. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01409-x

    Article  Google Scholar 

  • Casellato U et al (2000) A Mössbauer approach to the physico-chemical characterization of iron-containing pigments for historical wall paintings. J Cult Herit 1(3):217–232

    Google Scholar 

  • Castro K et al (2005) On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal Bioanal Chem 248–258

  • Cavalcante LCD et al (2011) Ochres from rituals of prehistoric human funerals at the Toca do Enoque site, Piauí, Brazil. Hyperfine Interact 203(1–3):39–45

    Google Scholar 

  • Cavallo G, Zorzin R (2008) Preliminary data on the yellow ochers at the mine of Via Tirapelle in Verona (Italy). X-Ray Spectrom 37:395–398

    Google Scholar 

  • Cavallo G et al (2018) Heat treatment of mineral pigment during the Upper Palaeolithic in North-East Italy. Archaeometry 60(5):1045–1061

    Google Scholar 

  • Cavallo G, Riccardi MP (2021) Glass-based pigments in painting. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01453-7

    Article  Google Scholar 

  • Chalmin E et al (2003) Analysis of rock art painting and technology of Palaeolithic painters. Meas Sci Technol 14:1590–1597

  • Church AH (1915) Chemistry of paints and painting materials, 4th Ed. Seeley, Service and Co, London

  • Cloutis E et al (2016) Identification of historic artists’ pigments using spectral reflectance and X-ray diffraction properties I. Iron oxide and oxy-hydroxide-rich pigments. J Near Infrared Spectrosc 24(1):27–45

  • Coccato A et al. (2017) On the stability of mediaeval inorganic pigments: a literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit Sci 5(1), article number: 12.

  • Corradini M et al (2021) Fiber optic reflection spectroscopy – near-infrared characterization study on dry pigments for pictorial retouching. Appl Spectrosc 75(40):445–461

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides, 2nd edn. Wiley-VCH, Darmstadt

    Google Scholar 

  • Cosentino A (2014) FORS spectral database of historical pigments in different binders. E-Conservation Journal 2:53–65

  • Creagh DC et al (2007) On the feasibility of establishing the provenance of Australian Aboriginal artefacts using synchrotron radiation X-ray diffraction and proton-induced X-ray emission. Nucl Instrum Methods Phys Res, Sect A 580(1):721–724

    Google Scholar 

  • Cudennec Y, Lecerf A (2006) The transformation of ferrihydrite into goethite or hematite, revisited. J Solid State Chem 179(3):716–722

    Google Scholar 

  • David RA et al (2001) Raman spectroscopic analysis of ancient Egyptian pigments. Archaeometry 43(4):461–473

    Google Scholar 

  • Dayet L et al (2019) Manganese and iron oxide use at Combe-Grenal (Dordogne, France): a proxy for cultural change in Neanderthal communities. J Archaeol Sci Rep 25:239–256

    Google Scholar 

  • de Faria DLA, Lopes FN (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc 45:117–121

    Google Scholar 

  • DeLaine J (2021) Production, transport and on-site organisation of Roman mortars and plasters. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01401-5

    Article  Google Scholar 

  • Demir S et al (2018) Execution technique and pigment characteristics of Byzantine wall paintings of Anaia church in Western Anatolia. J Archaeol Sci Rep 17:39–46

    Google Scholar 

  • Derrick MR et al (1999) Infrared spectroscopy in conservation science’. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Desborough GA et al (2010) Mineralogical and chemical characteristics of some natural jarosites. Geochim Cosmochim Acta 74:1041–1056

    Google Scholar 

  • Dimuccio LA et al (2017) Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy). Spectrochim Acta Part A Mol Biomol Spectrosc 173:704–720

    Google Scholar 

  • Dionysios of Fourna (1996) The ‘Painter’s manual’ of Dionysius of Fourna : an English translation [from the Greek] with commentary of cod. gr. 708 in the Saltykov-Shchedrin State Public Library, Leningrad’, edited by P. Hetherington. Oakwood, London

  • Doerner M (1984) The materials of the artist and their use in painting. Revised Edition, Harvest /Harcourt

  • Domingo Sanz I, Chieli A (2021) Characterising the pigments and paints of prehistoric artists. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01397-y

    Article  Google Scholar 

  • dos Santos LM et al (2018) Chemical and mineralogical characteristics of the pigments of archaeological rupestrian paintings from the Salão dos Índios site, in Piauí Brazil. J Archaeol Sci Rep 15:792–797

    Google Scholar 

  • Dubiel SM et al (2011) Relationship between the colour of ochre from Roussillon and the content of iron-bearing minerals. Appl Clay Sci 51(1–2):54–60

    Google Scholar 

  • Dubreuil L, Grosman L (2009) Ochre and hide-working at a Natufian burial place. Antiquity 38(322):935–954

    Google Scholar 

  • Duval AR (1992) Les preparations colorees des tableaux de l’Ecole Francaise des dix-septieme et dix-huitieme siecles. Stud Conserv 37(4):239–258

    Google Scholar 

  • Eastaugh N et al (2008) Pigment Compendium. Butterworth-Heinemann, Amsterdam

    Google Scholar 

  • Edwards R, Atkinson K (1986) Ore deposit geology and its influence on mineral exploration. Chapman and Hall, London

  • Edwards HGM, de Faria DLA (2004) Infrared, Raman microscopy and fibre-optic Raman spectroscopy (FORS), Chapter 8. In: Janssens K, Van Grieken R (Eds), Comprehensive analytical chemistry XLII. Elsevier, pp. 359–395

  • Edwards HGM, Villar SEJ, Eremin KA (2004) Raman spectroscopic analysis of pigments from dynastic Egyptian funerary artefacts. J Raman Spectrosc 35:786–795

    Google Scholar 

  • Eerkens JW et al (2014) Iron isotope analysis of red and black pigments on pottery in Nasca, Peru. Archaeol Anthropol Sci 6:241–254

    Google Scholar 

  • Egerton RF (2005) Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM. Springer, New York

    Google Scholar 

  • Elias M et al. (2006) The color of ochres explained by their composition. Mat Sci Eng B 127:70–80

  • Ergenç D, Fort R, Varas−Muriel MJ, Alvarez de Buergo M, (2021) Mortars and plasters – how to characterise aerial mortars and plasters. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01398-x

    Article  Google Scholar 

  • FitzHugh EW (1986) Red lead and minium. In: Feller RL (ed) Artist’s pigments: a handbook of their history and characteristics. Cambridge University Press, National Gallery of Art, pp 109–139

    Google Scholar 

  • FitzHugh EW (1997) Orpiment and realgar. In: FitzHugh EW (ed) Artist’s pigments: a handbook of their history and characteristics, vol 3. National Gallery of Art, Washington, pp 47–79

    Google Scholar 

  • Fiuza TER, Borges JFM, da Cunha JBM, Antunes SRM, de Andrade AVC, Antunes AC, de Souza ECF (2018) Iron-base inorganic pigments residue: preparation and application in ceramic, polymer, and paint. Dyes Pigm 148:319–328

    Google Scholar 

  • Fouad DE, Zhang C, El-Didamony H, Yingnan L, Mekuria TD, Shah AH (2019) Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticle synthesized via the precipitation route using ferric sulfate precursor. Results in Physics 12:1253–1261

    Google Scholar 

  • Franceschi E, Locardi F (2014) Strontium, a new marker of the origin of gypsum in cultural heritage? J Cult Herit 15(5):522–527

    Google Scholar 

  • Franquelo ML et al (2009) ‘Comparison between micro-Raman and micro-FTIR spectroscopy techniques for the characterization of pigments from Southern Spain Cultural Heritage. J Mol Struct 924–926:404–412

    Google Scholar 

  • Franquelo ML, Perez-Rodriguez JL (2016) A new approach to the determination of the synthetic or natural origin of red pigments through spectroscopic analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 166:103–111

    Google Scholar 

  • Froment F et al (2008) Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J Raman Spectrosc 39:560–568

    Google Scholar 

  • Fultz B (2011) ‘Mössbauer Spectrometry’, in Characterization of Materials, edited by E. Kaufmann. John Wiley, New York

  • Fuster-López L et al (2016) Study of the chemical composition and the mechanical behavior of 20th century commercial artists’ oil paints containing manganese-based pigments. Microchem J 124:962–973

    Google Scholar 

  • Garilli V et al. (2020) First evidence of Pleistocene ochre production from bacteriogenic iron oxides. A case study of the Upper Palaeolithic site at the San Teodoro Cave (Sicily, Italy). J Archaeol Sci 123(105221):1–16

  • Garofano I et al (2016) An innovative combination of non-invasive UV–visible-FORS, XRD and XRF techniques to study Roman wall paintings from Seville, Spain. J Cult Herit 22:1028–1039

    Google Scholar 

  • Genestar C, Pons C (2005) Earth pigments in painting: characterization and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis. Anal Bioanal Chem 382:269–274

    Google Scholar 

  • Gettens RJ, Stout GL (1966) Painting materials. A short encyclopedia. Dover, New York

    Google Scholar 

  • Ghezzi L et al (2015) Interactions between inorganic pigments and rabbit skin glue in reference paint reconstructions. J Therm Anal Calorim 122(1):315–322

    Google Scholar 

  • Gialanella S et al (2010) On the goethite to hematite phase transformation. J Therm Anal Calorim 102:867–873

    Google Scholar 

  • Gil M et al (2007) Yellow and red ochre pigments from southern Portugal: elemental composition and characterisation by WDXRF and XRD. Nucl Instrum Methods Phys Res, Sect A 580(1):728–731

    Google Scholar 

  • Gliozzo E et al (2012) Pigments and plasters from the Roman settlement of Thamusida (Rabat, Morocco). Archaeometry 54(2):278–293

    Google Scholar 

  • Gliozzo E (2021) Pigments –mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01402-4

    Article  Google Scholar 

  • Gliozzo E, Burgio L (2021) Pigments – arsenic-based yellows and reds. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01431-z

    Article  Google Scholar 

  • Gliozzo E, Ionescu C (2021) Pigments – lead-based whites, reds, yellows and oranges and their alteration phases. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01407-z

    Article  Google Scholar 

  • Gliozzo E, Pizzo A, La Russa MF (2021) Mortars, plasters and pigments – research questions and sampling criteria. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01393-2

    Article  Google Scholar 

  • Goodhew PJ et al (2000) Electron microscopy and analysis, 3rd edn. Taylor & Francis, London

    Google Scholar 

  • Ghosh P et al. (2006) Inter-basaltic clay (bole bed) horizons from Deccan traps of India: implications for palaeo-weathering and palaeo-climate during Deccan volcanism. Palaeogeogr Palaeoclimatol Palaeoecol 242:90–109

  • Gravel-Miguel C et al (2017) The breaking of ochre pebble tools as part of funerary ritual in the Arene Candide Epigravettian Cemetery. Camb Archaeol J 27(2):331–350

    Google Scholar 

  • Grygar T et al (2002) Voltammetric analysis of iron oxide pigments. Analyst 127(8):1100–1107

    Google Scholar 

  • Grygar T et al (2003) Analysis of earthy pigments in grounds of Baroque paintings. Anal Bioanal Chem 375(8):1154–1160

    Google Scholar 

  • Gueli AM et al (2017) Effect of particle size on pigments colour. Color Res Appl 42(2):236–243

    Google Scholar 

  • Hall AJ, Photos-Jones E (2008) Accessing past beliefs and practices: the case of Lemnian Earth. Archaeometry 50(6):1034–1049

    Google Scholar 

  • Harley RD (1982) Artists’ Pigments c. 1600–1835, 2nd edn. Archetype Publ. Ltd., London

    Google Scholar 

  • Hein A et al (2009) Byzantine wall paintings from Mani (Greece): microanalytical investigation of pigments and plasters. Anal Bioanal Chem 395:2061–2071

    Google Scholar 

  • Helwig K (1997) A note on burnt yellow earth pigments: documentary sources and scientific analysis. Stud Conserv 42:181–188

    Google Scholar 

  • Helwig K (2007) ‘Iron oxide pigments’, in Artist’s pigments: a handbook of their history and characteristics, Vol. 4, edited by B. H. Berrie. National Gallery of Art, Washington and Archetype publications, London pp. 1–37

  • Herrera LK et al (2008) Characterization of iron oxide-based pigments by synchrotron-based micro X-ray diffraction. Appl Clay Sci 42:57–62

    Google Scholar 

  • Hirayama A et al (2018) Development of a new portable X-ray powder diffractometer and its demonstration to on-site analysis of two selected old master paintings from the Rijkmsmuseum. Microchem J 138:266–272

    Google Scholar 

  • Hodgskiss T, Wadley L (2017) How people used ochre at Rose Cottage Cave, South Africa: sixty thousand years of evidence from the Middle Stone Age. PLoS ONE 12: e0176317

  • Holser WT (1953) Limonite is goethite. Acta Crystallogr A 6:565

    Google Scholar 

  • Horn KR (2018) Time takes its toll: detection of organic binder media in ochre paints with visible near-infrared and short-wave infrared reflectance spectroscopy. J Archaeol Sci Rep 21:10–20

    Google Scholar 

  • Hradil D et al (2003) Clay and iron oxide pigments in the history of painting. Appl Clay Sci 22:223–236

    Google Scholar 

  • Hradil D et al (2017) Late Gothic/early Renaissance gilding technology and the traditional poliment material “Armenian bole”: truly red clay, or rather bauxite? Appl Clay Sci 135:271–281

    Google Scholar 

  • Hradil D et al (2020) Clay minerals in European painting of the mediaeval and baroque periods. Minerals 10:255

    Google Scholar 

  • Iriarte E et al (2009) The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo caves (Northern Spain). Archaeometry 51(2):231–251

    Google Scholar 

  • Janssens K (2004) X-ray based methods of analysis, Chapter 4. In: Janssens K, Van Grieken R (Eds). Comprehensive analytical chemistry XLII. Elsevier pp 129–226

  • Janssens K, Cotte M (2020) Using synchrotron radiation for characterization of Cultural Heritage materials. In: Jaeschke E, Khan S, Schneider J, Hastings J (eds) Synchrotron light sources and free-electron lasers. Springer, Cham, pp 2457–2483

    Google Scholar 

  • Johansson S et al (1995) Particle-induced X-ray emission spectrometry (PIXE). John Wiley and Sons, New York

    Google Scholar 

  • Jolly JLW, Collins CT (1980) Iron oxide pigments-location, production, and geological description. US Department of the Interior, Bureau of Mines, Washington DC

  • Katsaros Th (2008) ‘The redness of Ulysses’ Ships’ in Science and Technology in Homeric Epics, ed. by S.A. Paipetis, Springer, pp 385–389

  • Katsaros Th, Bassiakos Y (2002) ‘The colors of Theophrastus: sources, characterization and applications’, in Color in Ancient Greece, ed. by M.A. Tiverios and D.S. Tsiafakis. Aristotle University of Thessaloniki, Thessaloniki pp 201–209

  • Knapp CW, Christidis GE, Venieri D, Gounaki I, Gibney-Vamvakari J, Stillings M, Photos-Jones E (2021) The ecology and bioactivity of some Greco-Roman medicinal minerals: the case of Melos earth pigments. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01396-z

    Article  Google Scholar 

  • Konta J (1995) Clay and man: clay raw materials in the service of man. Appl Clay Sci 10:275–335

    Google Scholar 

  • Košařová V et al (2013) Microanalysis of clay-based pigments in painted artworks by the means of Raman spectroscopy. J Raman Spectrosc 44:1570–1577

    Google Scholar 

  • Kostomitsopoulou Marketou A et al (2019) Colourful earth: iron-containing pigments from the Hellenistic pigment production site of the ancient agora of Kos (Greece). J Archaeol Sci: Reports 26:101843

  • Koukouli-Chrysanthaki C, Weisgerber G (1999) Prehistoric Ochre Mines on Thasos. In: Koukouli-Chrysanthaki C, Müller A, Papadopoulos S (eds) Thasos: Matières Premières et Technologie de la Préhistoire à nos jours. Paris, De Boccard, pp 129–144

    Google Scholar 

  • Lancaster LC (2021) Mortars and plasters – how mortars were made. The Literary Sources. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01395-0

  • Laurie AP (1967) The painters methods and materials. Dover, New York

    Google Scholar 

  • Lazic V et al (2018) Applications of laser induced breakdown spectroscopy for cultural heritage: A comparison with XRF and PIXE techniques. Spectrochimica Acta - Part B Atomic Spectroscopy 149:1–14

    Google Scholar 

  • La Russa MF, Ruffolo SA (2021) Mortars and plasters – How to characterise mortars and plasters degradation. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01405-1

    Article  Google Scholar 

  • Legodi MA, de Waal D (2007) The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigm 74:161–168

    Google Scholar 

  • Lehmann R et al (2016) 57Fe Mössbauer, SEM/EDX, p-XRF and μ-XRF studies on a Dutch painting. Hyperfine Interact 237(1):1–10

    Google Scholar 

  • Lehmann R et al (2017) ‘Klimt artwork: red-pigment material investigation by backscattering Fe-57 Mössbauer spectroscopy. SEM and p-XRF’, STAR: Science & Technology of Archaeological Research 3(2):450–455

  • Leskelä T, Leskelä M (1984) Preparation of yellow and red iron oxide pigments from ion (II) sulfate by alkali precipitation. Thermochim Acta 77:177–184

    Google Scholar 

  • Lucas A, Harris JR (1999) Ancient Egyptian materials and industries. Dover

  • Lytle E (2013) Greek. Roman and Byzantine Studies 53:520–550

    Google Scholar 

  • MacDonald BL et al (2011) Geochemical characterization of ochre from central coastal British Columbia, Canada. J Archaeol Sci 38:3620–3630

    Google Scholar 

  • MacDonald BL et al (2013) Elemental analysis of ochre outcrops in southern British Columbia, Canada. Archaeometry 6:1020–1033

    Google Scholar 

  • MacDonald BL et al (2019) Hunter-gatherers harvested and heated microbial biogenic iron oxides to produce rock art pigment. Sci Rep 9(17070):1–13

    Google Scholar 

  • Mactaggart P, Mactaggart A (2002) Practical gilding. Archetype Publ. Ltd., London

  • Manasse A, Mellini M (2006) Iron (hydr)oxide nanocrystals in raw and burnt sienna pigments. Eur J Mineral 18:845–853

    Google Scholar 

  • Manfredi M et al (2017) Non-invasive characterization of colorants by portable diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and chemometrics. Spectrochim Acta Part A Mol Biomol Spectrosc 181:171–179

    Google Scholar 

  • Maniatis Y et al (1993) New evidence for the nature of the Attic black gloss. Archaeometry 35(1):23–34

    Google Scholar 

  • Marcaida I et al (2019) Raman microscopy as a tool to discriminate mineral phases of volcanic origin and contaminations on red and yellow ochre raw pigments from Pompeii. J Raman Spectrosc 50:143–149

    Google Scholar 

  • Marić-Stojanović M et al (2018) Spectroscopic analysis of XIV century wall paintings from Patriarchate of Peć Monastery, Serbia. Spectrochim Acta Part A Mol Biomol Spectrosc 191:469–477

    Google Scholar 

  • Máša B et al (2012) Ochre precipitates and acid mine drainage in a mine environment. Ceramics – Silikáty 56(1):9–14

  • Marshall LJR et al (2005) Analysis of ochres from Clearwell Caves: the role of particle size in determining colour. Spectrochimica Acta - Part a: Molecular and Biomolecular Spectroscopy 61(1–2):233–241

    Google Scholar 

  • Mastrotheodoros GP, Beltsios KG (2019) Sound practice and practical conservation recipes as described in Greek post-Byzantine painters. Manuals’, Studies in Conservation 64(1):42–53

  • Mastrotheodoros G et al (2010) Assessment of the production of antiquity pigments through experimental treatment of ochres and other iron-based precursors. Medit Arch & Arch 10(1):37–59

  • Mastrotheodoros G et al (2013) Decorated archaic pottery from the Heracles sanctuary at Thebes: a materials, technology and provenance study. Archaeometry 55(5):806–824

    Google Scholar 

  • Mastrotheodoros GP et al (2016) On the grounds of post-Byzantine Greek icons. Archaeometry 58(5):830–847

    Google Scholar 

  • Mastrotheodoros GP et al (2019) Probing the birthplace of the “Epirus/NW Greece School” of painting: analytical investigation of the Filanthropinon monastery murals. Part IΙ: non-pigment materials and painting technique. Archaeol Anthropol Sci 11(10):5781–5798

    Google Scholar 

  • Mastrotheodoros GP et al (2021) On the red and yellow pigments of post-Byzantine icons. Archaeometry 63(4):753–778

    Google Scholar 

  • Mayer R (1991) ‘The artist’s handbook of materials & techniques’, 5th edition, revised and expanded by S. Sheehan. faber and faber, London

  • Milanou K et al (2008) Angelos painting technique. A description of panel construction, materials and painting method based on a study of seven signed icons. In: Milanou K et al (Eds) Icons by the hand of Angelos: the painting method of a fifteenth-century Cretan painter. Benaki Museum, Athens pp 19–114

  • Monnard A et al (2016) Influence of moisture content on colour of granular materials. Part I: experiments on yellow ochre. Granular Matter 18:47

  • Montagner C et al (2013) Ochres and earths: matrix and chromophores characterization of 19th and 20th century artist materials. Spectrochim Acta Part A Mol Biomol Spectrosc 103:409–416

    Google Scholar 

  • Mooney SD, Geiss C, Smith MA (2003) The use of mineral magnetic parameters to characterize archaeological ochres. J Archaeol Sci 30:511–523

    Google Scholar 

  • Moorey PRS (1999) Ancient Mesopotamian materials and industries. Winona Lake, Einsenbrauns

  • Mortimore JL et al (2004) Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectrochimica Acta - Part a: Molecular and Biomolecular Spectroscopy 60(5):1179–1188

    Google Scholar 

  • Mounier A, Daniel F (2013) The role of the under-layer in the coloured perception of gildings in mediaeval mural paintings. Open Journal of Archaeometry 1(1):e16

  • Moyo S et al (2016) Blombos Cave: Middle Stone Age ochre differentiation through FTIR, ICP OES, ED XRF and XRD. Quatern Int 404:20–29

    Google Scholar 

  • Murat Z (2021) Wall paintings through the ages. The medieval period (Italy, 12th-15th century). Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01410-4

  • Nicola M et al. (2016) ‘Iron oxide-based pigments and their use in history’, in Iron Oxides: From Nature to Applications, edited by D. Faivre. Wiley pp 545–565

  • Noll W et al (1975) Painting of ancient ceramics. Angewandte Chemie, Int. ed., 14(9):602–613

  • Papadopoulos N (1815)  Hermēs ho Kerdōos, Vol. I. lēmma: Gē Lēmnia, Venice

  • Pappalardo L et al (2003) The improved LNS PIXE-alpha portable system: archaeometric applications. Archaeometry 45(2):333–339

    Google Scholar 

  • Paternoster G et al (2005) Study on the technique of the roman age mural paintings by micro-XRF with polycapillary conic collimator and micro-Raman analyses. J Cult Herit 6(1):21–28

    Google Scholar 

  • Pérez-Arantegui J (2021) Not only wall paintings – pigments for cosmetics. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01399-w

    Article  Google Scholar 

  • Pessanha S et al (2012) Application of spectroscopic techniques to the study of illuminated manuscripts: a survey. Spectrochimica Acta - Part B Atomic Spectroscopy 71–72:54–61

    Google Scholar 

  • Petraco N, Kubic T (2003) Color atlas and manual of microscopy for criminalists, chemists, and conservators. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Photos-Jones E et al (2018) Greco-Roman mineral (litho)therapeutics and their relationship to their microbiome: the case of the red pigment miltos. J Arch Science Reports 22:179–192

  • Ploeger R, Shugar A (2017) The story of Indian yellow – excreting a solution. J Cult Herit 24:197–205

    Google Scholar 

  • Poli T et al (2017) Interactions of natural resins and pigments in works of art. J Colloid Interface Sci 503:1–9

    Google Scholar 

  • Pomiés M-P et al (1999) Red Paleolithic pigments: natural hematite or heated goethite? Archaeometry 41(2):275–285

    Google Scholar 

  • Popelka-Filcoff RS et al (2007) Trace element characterization of ochre from geological sources. J Radioanal Nucl Chem 272(1):17–27

    Google Scholar 

  • Pospíšilová E et al (2018) Depth-resolved analysis of historical painting model samples by means of laser-induced breakdown spectroscopy and handheld X-ray fluorescence. Spectrochimica Acta Part B 147:100–108

    Google Scholar 

  • Pouyet E et al (2015) Thin-sections of painting fragments: opportunities for combined synchrotron-based micro-spectroscopic techniques. Heritage Science 3(3):1–16

    Google Scholar 

  • Przepiera K, Przepiera A (2001) Kinetics of thermal transformations of precipitated magnetite and goethite. J Therm Anal Calorim 65:497–503

    Google Scholar 

  • Rapp GR (2002) Archaeomineralogy. Springer, New York

    Google Scholar 

  • Rifkin R (2012) Processing ochre in the Middle Stone Age: testing the inference of prehistoric behaviours from actualistically derived experimental data. J Anthropol Archaeol 31:174–195

    Google Scholar 

  • Rigon C et al (2020) New results in ancient Maya rituals researches: the study of human painted bones fragments from Calakmul archaeological site (Mexico). J Archaeol Sci: reports 32:102418

  • Román RS et al (2015) ‘Analysis of the red ochre of the El Mirón burial (Ramales de la Victoria, Cantabria, Spain). J Archaeol Sci 60:84–98

    Google Scholar 

  • Romano FP et al (2012) A new version of a portable polonium source for the non-destructive PIXE (particle induced X-ray emission) analysis in the cultural heritage field. Microchem J 101:95–98

    Google Scholar 

  • Romano FP et al (2017) Real-time elemental imaging of large dimension paintings with a novel mobile macro X-ray fluorescence (MA-XRF) scanning technique. J Anal at Spectrom 32(4):773–781

    Google Scholar 

  • Romero-Pastor J et al (2011) Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy. Anal Chem 83(22):8420–8428

    Google Scholar 

  • Rosell L et al (1998) Strontium geochemistry of Miocene primary gypsum: Messinian of Southeastern Spain and Sicily and Badenian of Poland. J Sediment Res 68(1):63–79

    Google Scholar 

  • Rosso DE et al (2016) Middle Stone Age ochre processing and behavioural complexity in the Horn of Africa: evidence from Porc-Epic Cave, Dire Dawa, Ethiopia. PLoS ONE 11(11):e0164793

  • Rzepa G et al (2016) Mineral transformations and textural evolution during roasting of bog iron ores. J Therm Anal Calorim 123:615–630

    Google Scholar 

  • Sajó IE et al (2015) Core-shell processing of natural pigment: upper palaeolithic red ochre from Lovas, Hungary. PloS ONE 10(7):e0131762

  • Salvadori M, Sbrolli C (2021) Wall paintings through the ages. The Roman Period: Republic and Early Empire Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01411-3

    Article  Google Scholar 

  • Salvant J et al (2018) A Roman Egyptian painting workshop: technical investigation of the portraits from Tebtunis, Egypt. Archaeometry 60(4):815–833

    Google Scholar 

  • Sandu ICA, de Sá MH, Pereira MC (2011) Ancient ‘gilded’ art objects from European cultural heritage: a review on different scales of characterization. Surf Interface Anal 43(8):1134–1151

    Google Scholar 

  • Scadding R et al (2015) An LA-ICP-MS trace element classification of ochres in the Weld Range environ, Mid West region, Western Australia. J Archaeol Sci 54(1):300–312

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory – preparation and characterization, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Siddall R (2018) Mineral pigments in archaeology: their analysis and the range of available minerals. Minerals 8(5):201–235

    Google Scholar 

  • Sikalidis C et al (2006) Iron oxide pigmenting powders produced by thermal treatment of iron solid wastes from steel mill pickling lines. J Therm Anal Calorim 86(2):411–415

    Google Scholar 

  • Singh B et al (1999) Mineralogy and chemistry of ochre sediments from an acid drainage near a disused mine in Cornwall, UK. Clay Miner 34:301–317

    Google Scholar 

  • Smith GD, Clark RJH (2004) Raman microscopy in archaeological science. J Archaeol Sci 31:1137–1160

    Google Scholar 

  • Smith MA, Pell S (1997) Oxygen-isotope ratios in quartz as indicators of the provenance of archaeological ochres. J Archaeol Sci 24:773–778

    Google Scholar 

  • Stols-Wiltox M (2012) Grounds, 1400–1900. In: Stoner HJ, Rushfield R (eds) Conservation of easel paintings. Routledge, Oxon, pp 161–185

    Google Scholar 

  • Svarcová Š et al (2011) Clay pigment structure characterization as a guide for provenance determination – a comparison between laboratory powder micro XRD and synchrotron radiation XRD. Anal Bioanal Chem 399:331–336

    Google Scholar 

  • Švarcová S, Hradil D, Hradilová J, Čermáková Z (2021) Pigments – copper-based greens and blues. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01406-0

    Article  Google Scholar 

  • Taçon P (2004) Ochre, clay, stone and art: the symbolic importance of minerals as life-force among aboriginal peoples of northern and central Australia. In: Boivin N, Owoc MA (eds) Soils, Stones and Symbols: Cultural Perceptions of the Mineral World. London, UCL, pp 31–42

    Google Scholar 

  • Theophilus (1979) ‘On divers arts’, translated and commented by Hawthorne J.G. and Smith C.S. Dover, New York

  • Thompson DV (1956) The materials and techniques of medieval painting. Dover, New York

    Google Scholar 

  • Tucker ME (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks. Wiley-Blackwell, Oxford

    Google Scholar 

  • Van Grieken RE, Markowicz AA (eds) (2002) Handbook of X-ray spectrometry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Vandenabeele P (2013) Practical Raman spectroscopy: an introduction. John Wiley & Sons

  • Velliky EC et al (2019) A preliminary study on ochre sources in Southwestern Germany and its potential for ochre provenance during the Upper Paleolithic. J Archaeol Sci: Reports 27:101977

  • Vitti P (2021) Mortars and masonry - structural lime and gypsum mortars in Antiquity and Middle Ages. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-021-01408-y

    Article  Google Scholar 

  • Vouvé J et al (1992) De l’usage des mineraux de manganese par les artistes de la grotte prehistorique de Lascaux, sud-ouest de la France. Stud Conserv 37(3):185–192

    Google Scholar 

  • Wagner FE, Kyek A (2004) Mössbauer spectroscopy in archaeology: introduction and experimental considerations. Hyperfine Interact 154:5–33

    Google Scholar 

  • Wallert A (1995) Unusual pigments in a Greek marble basin. Stud Conserv 40:177–188

    Google Scholar 

  • Walter D et al (2001) The mechanism of thermal transformation from goethite to hematite. J Therm Anal Calorim 63:733–748

    Google Scholar 

  • Waseda Y et al (2011) X-Ray Diffraction Crystallography. Springer, Berlin

    Google Scholar 

  • Wu Q et al (2020a) Does substrate colour affect the visual appearance of gilded medieval sculptures? Part I: colorimetry and interferometric microscopy of gilded models. Herit Sci 8(1):118

  • Wu Q et al (2020b) Does substrate colour affect the visual appearance of gilded medieval sculptures? Part II: SEM–EDX observations on gold leaf samples taken from medieval wooden sculptures. Herit Sci 8(1):119

  • Zipkin AM et al (2017) Elemental fingerprinting of Kenya Rift Valley ochre deposits for provenance studies of rock art and archaeological pigments. Quatern Int 430:42–59

    Google Scholar 

  • Zipkin AM et al (2020) Red earth, green glass, and compositional data: a new procedure for solid-state elemental characterization, source discrimination, and provenience analysis of ochres. J Archaeol Method Theory 27:930–970

    Google Scholar 

  • Zolotoyabko E (2014) Basic concepts of X-ray diffraction. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere acknowledgments towards Dr. Y. Bassiakos, Emeritus Researcher, INN, NCSR “Demokritos,” for his invaluable contribution in the formation of the “Natural ochres: geology and mineralogy” section. Also, the Greek Ministry of Culture and Sports is acknowledged for sampling permissions. Professor D.F. Anagnostopoulos and PhD candidate A. Asvestas (Materials Science & Engineering Department, Ioannina University, Greece) are thanked for granting permission to publish the elemental distribution map shown in Fig. 7a. Finally, Dr. N. Boukos and Dr. G. Mitrikas from INN, NCSR “Demokritos,” are warmly thanked for providing access to SEM-EDS and μ-Raman devices, respectively.

This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Reinforcement of Postdoctoral Researchers—2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (ΙΚΥ).

figure a

Funding

G.P. Mastrotheodoros received a post-doctoral scholarship from the State Scholarships Foundation (IKY) (grant number: 2019–050-0503–18729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios P. Mastrotheodoros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mortars, plasters and pigments: Research questions and answers

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Supplementary file2 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrotheodoros, G.P., Beltsios, K.G. Pigments—Iron-based red, yellow, and brown ochres. Archaeol Anthropol Sci 14, 35 (2022). https://doi.org/10.1007/s12520-021-01482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01482-2

Keywords

Navigation