Skip to main content
Log in

Visible near-infrared spectroscopy as an aid for archaeological interpretation

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

We present a pilot study using visible near-infrared spectroscopy (vis-NIRS) to investigate ancient geochemical activity signals from an excavation of the Viking-Age Ribe Emporia, Denmark. Our aim is to study whether vis-NIRS is applicable to archaeological soil analysis and if it can provide additional insight into the use of space inside houses. Using 1059 bulk soil samples sampled in a 0.25 cm grid, we test if vis-NIRS is useful for predicting magnetic susceptibility and anthropogenic elements such as Ca, Cu, P and Sr. Furthermore, we test both portable X-ray fluorescence (pXRF), magnetic susceptibility and bulk chemistry (by inductively coupled plasma mass spectrometry, ICP-MS) as reference data for training the vis-NIRS models. Predictions were performed using a partial least squares (PLS) regression with a non-linear iterative partial least squares (NIPALS) algorithm, and the best cross-validation predictions for each element based on both portable pXRF and ICP-MS as well as predictions for magnetic susceptibility were analysed spatially using ordinary kriging. The spatial analysis showed reduced precision for all elements and magnetic susceptibility compared to reference maps. Additionally, the spectral predictions had difficulties in predicting the entire elemental and magnetic susceptibility range and especially struggled with the prediction of hotspot areas. Elemental predictions based on the two different reference datasets, collected with pXRF and ICP-MS, performed equally well. The more cost-efficient approach was pXRF for calibration data. Further development is needed for the application of vis-NIRS to be fully implemented together with geochemical tools as a regular part of archaeological soil analysis on site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahams PW, Entwistle JA, Dodgshon RA (2010) The Ben Lawers historic landscape project: simultaneous multi-element analysis of former settlement and arable soils by X-ray fluorescence spectrometry. J Archaeol Method Theory 17:231–248. https://doi.org/10.1007/s10816-010-9086-8

    Article  Google Scholar 

  • Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2015) Scheffer/Schachtschabel Soil Science. Springer Nature, pp 618

  • Cannell RJS, Cheetham PN, Welham K (2016) Geochemical analysis using portable X-ray fluorescence. In: Skre D (ed) Avaldsnes - A Sea-Kings’ Manor in First-Millennium Western Scandinavia, pp 423–456. https://doi.org/10.1515/9783110421088-020

    Chapter  Google Scholar 

  • Cannell RJS, Gustavsen L, Kristiansen M, Nau E (2018) Delineating an unmarked graveyard by high-resolution GPR and pXRF prospection: the Medieval Church Site of Furulund in Norway. Comput Appl Archaeol 1(1):1–18

    Google Scholar 

  • Casana J, Wiewel A, Cool A, Hill AC, Fisher KD, Laugier EJ (2017) Archaeological aerial thermography in theory and practice. Adv Archaeol Pract 5(4):310–327

    Article  Google Scholar 

  • Chang C, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy - principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490

    Article  Google Scholar 

  • Cook SR, Clarke AS, Fulford MG, Voss J (2014) Characterising the use of urban space: a geochemical case study from Calleva Atrebatum (Silchester, Hampshire, UK) Insula IX during the late first/early second century AD. J Archaeol Sci 50(1):108–116. https://doi.org/10.1016/j.jas.2014.07.003

    Article  Google Scholar 

  • Cozzolino D, Moron A (2003) The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. J Agric Sci 140:65–71

    Article  Google Scholar 

  • Croix S (2015) Permanency in Early Medieval Emporia: reassessing Ribe. Eur J Archaeol 18(3):497–523. https://doi.org/10.1179/1461957114y.0000000078

    Article  Google Scholar 

  • Croix S, Deckers P, Feveile C, Knudsen M, Qvistgaard SS, Sindbæk SM, Wouters B (2019) Single context, metacontext, and high definition archaeology: integrating new standards of stratigraphic excavation and recording. J Archaeol Method Theory 26:1591–1631. https://doi.org/10.1007/s10816-019-09417-x

    Article  Google Scholar 

  • Daniel KW, Tripathi NK, Honda K (2003) Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Aust J Soil Res 41:46–59

    Google Scholar 

  • De Smedt P, Saey T, Meerschman E, De Reu J, De Clercq W, Van Meirvenne M (2014) Comparing apparent magnetic susceptibility measurements of a multi-receiver EMI sensor with topsoil and profile magnetic susceptibility data over weak magnetic anomalies. Archaeol Prospect 21(2):103–112. https://doi.org/10.1002/arp.1467

    Article  Google Scholar 

  • Dore CD, Varela SLL (2010) Kaleidoscopes, palimpsests, and clay: realities and complexities in human activities and soil chemical/residue analysis. J Archaeol Method Theory 17(3):279–302. https://doi.org/10.1007/s10816-010-9092-x

    Article  Google Scholar 

  • Feveile C (2006) Ribe on the north side of the river, 8th–12th century–—overview and interpretation. In: Feveile C (ed) Ribe Studier. Det Ældste Ribe. Udgravninger på nordsiden af Ribe Å 1984–2000. Bind 1.1. Jysk Arkæologisk Selskab, pp 65–91

  • Feveile C (2010) Landskabet; Ribe opstår 700-865. In: Christiansen SB (ed) Ribe Bys Historie: 710-1520, 1st edn. Dansk Center for Byhistorie, Ribe, pp 20–38

    Google Scholar 

  • Feveile C (2012) Ribe: Emporia and town in 8th–9th century. In: Gelichi S, Hodges R (eds) From One Sea to Another. Trading Places in the European and Mediterranean Early Middle Ages, Proceedings of the International Conference Comacchio, 27–29 March 2009. Brepols Publishers, pp 111–122

  • Feveile C, Jensen S (2000) Ribe in the 8th and 9th century: a contribution to the archaeological chronology of north western Europe. Acta Archaeol 71(1–2):9–24. https://doi.org/10.1034/j.1600-0390.2000.d01-2.x

    Article  Google Scholar 

  • Fleisher J, Sulas F (2015) Deciphering public spaces in urban contexts: geophysical survey, multi-element soil analysis, and artifact distributions at the 15th-16th-century AD Swahili settlement of Songo Mnara, Tanzania. J Archaeol Sci 55:55–70. https://doi.org/10.1016/j.jas.2014.12.020

    Article  Google Scholar 

  • Grabowski R, Linderholm J (2014) Functional interpretation of Iron Age longhouses at Gedved Vest, East Jutland, Denmark: multiproxy analysis of house functionality as a way of evaluating carbonised botanical assemblages. Archaeol Anthropol Sci 6:329–343. https://doi.org/10.1007/s12520-013-0161-4

    Article  Google Scholar 

  • Haburaj V, Krause J, Pless S, Waske B, Schütt B (2019) Evaluating the potential of semi-automated image analysis for delimiting soil and sediment layers. J Field Archaeol 44(8):538–549. https://doi.org/10.1080/00934690.2019.1656321

    Article  Google Scholar 

  • Hermansen C, Moldrup P, Müller K, Knadel M, Jonge LW (2019) The relation between soil water repellency and water content can be predicted by vis-NIR spectroscopy. Soil Sci Soc Am J 83(6):1616–1627. https://doi.org/10.2136/sssaj2019.03.0092

    Article  Google Scholar 

  • Jensen S (1991) Dankirke - Ribe. Fra handelsgård til handelsplads. In: Mortensen P, Rasmussen BM (eds) Fra stamme til stat i Danmark. 2: Høvdingesamfund og Kongemagt. Jysk Arkæologisk Selskab, pp 73–87

  • Katuwal S, Knadel M, Moldrup P, Norgaard T, Greve MH, de Jonge LW (2018) Visible–near-infrared spectroscopy can predict mass transport of dissolved chemicals through intact soil. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-29306-9

    Article  Google Scholar 

  • Katuwal S, Knadel M, Norgaard T, Moldrup P, Greve MH, de Jonge LW (2020) Predicting the dry bulk density of soils across Denmark: comparison of single-parameter, multi-parameter, and vis–NIR based models. Geoderma:361. https://doi.org/10.1016/j.geoderma.2019.114080

  • Kemper T, Sommer S (2002) Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ Sci Technol 36:2742–2747

    Article  Google Scholar 

  • Knadel M, Stenberg B, Deng F, Humlekrog M (2013) Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination. J Near Infrared Spectrosc 21:67–80. https://doi.org/10.1255/jnirs.1035

    Article  Google Scholar 

  • Knadel M, Deng F, Alinejadian A, de Jonge LW, Moldrup P, Greve MH (2014) The effects of moisture conditions-from wet to hyper dry-on visible near-infrared spectra of Danish reference soils. Soil Sci Soc Am J 78(2):422–433

    Article  Google Scholar 

  • Knadel M, de Jonge LW, Tuller M, Rehman HU, Jensen PW, Moldrup P, Greve MH, Arthur E (2020) Combining visible near-infrared spectroscopy and water vapor sorption for soil specific surface area estimation. Vadose Zone J 19(1):1–13. https://doi.org/10.1002/vzj2.20007

    Article  Google Scholar 

  • Kristiansen SM (2001) Present-day soil distribution explained by prehistoric land-use: Podzol-Arenosol variation in an ancient woodland in Denmark. Geoderma 103:273–289. https://doi.org/10.1016/S0016-7061(01)00044-1

    Article  Google Scholar 

  • Kruse J, Abraham M, Amelung W, Baum C, Bol R, Kühn O, Lewandowski H, Niederberger J, Oelmann Y, Rüger C, Santner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Leinweber P (2015) Innovative methods in soil phosphorus research: a review. J Plant Nutr Soil Sci 178:43–88. https://doi.org/10.1002/jpln.201400327

    Article  Google Scholar 

  • Lauer F, Pätzold S, Gerlach R, Protze J, Willbold S, Amelung W (2013) Phosphorus status in archaeological arable topsoil relicts-is it possible to reconstruct conditions for prehistoric agriculture in Germany? Geoderma 207–208(1):111–120. https://doi.org/10.1016/j.geoderma.2013.05.005

    Article  Google Scholar 

  • Linderholm J (2007) Soil chemical surveying: a path to a deeper understanding of prehistoric sites and societies in Sweden. Geoarchaeology 22(4):417–438. https://doi.org/10.1002/gea.20159

    Article  Google Scholar 

  • Linderholm J, Geladi P (2012) Classification of archaeological soil and sediment samples using near infrared techniques. NIR News 23(7):6–9. https://doi.org/10.1255/nirn.1329

    Article  Google Scholar 

  • Linderholm J, Pierna JAF, Dardenne P, Baeten V (2013) Identification of fragmented bones and their state of preservation using near infrared hyperspectral image analysis. J Near Infrared Spectrosc 21(6):459–466

    Article  Google Scholar 

  • Malley DF, Williams PC (1997) Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environ Sci Technol 31:3461–3467

    Article  Google Scholar 

  • Middleton WD (2004) Identifying chemical activity residues on prehistoric house floors: a methodology and rationale for multi-elemental characterization of a mild acid extract of anthropogenic sediments. Archaeometry 46(1):47–65. https://doi.org/10.1111/j.1475-4754.2004.00143.x

    Article  Google Scholar 

  • Middleton WD, Barba L, Pecci A, Burton JH, Ortiz A, Salvini L, Suárez RR (2010) The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS. J Archaeol Method Theory 17:183–208. https://doi.org/10.1007/s10816-010-9088-6

    Article  Google Scholar 

  • Mikołajczyk Ł, Milek K (2016) Geostatistical approach to spatial, multi-elemental dataset from an archaeological site in Vatnsfjörður, Iceland. J Archaeol Sci Rep 9:577–585. https://doi.org/10.1016/j.jasrep.2016.08.036

    Article  Google Scholar 

  • Milek KB, Roberts HM (2013) Integrated geoarchaeological methods for the determination of site activity areas: a study of a Viking Age house in Reykjavik, Iceland. J Archaeol Sci 40(4):1845–1865. https://doi.org/10.1016/j.jas.2012.10.031

    Article  Google Scholar 

  • Milek K, Zori D, Connors C, Baier W, Baker K, Byock J (2014) Interpreting social space and social status in the Viking Age house at Hrísbrú using integrated geoarchaeological and microrefuse analyses. In: Zori D, Byock J (eds) Viking Archaeology in Iceland: The Mosfell Archaeological Project, pp 143–162. https://doi.org/10.1484/M.CURSOR-EB.1.102218

    Chapter  Google Scholar 

  • Minasny B, McBratney AB (2008) Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemom Intell Lab Syst 94(1):72–79. https://doi.org/10.1016/j.chemolab.2008.06.003

    Article  Google Scholar 

  • Nicolodelli G, Cabral J, Menegatti CR, Marangoni B, Senesi GS (2019) Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: an overview of developments in the last decade (2010–2019). Part I. Soils and fertilizers. TrAC - Trends Anal Chem 115:70–82

    Article  Google Scholar 

  • Nielsen NH, Kristiansen SM (2014) Identifying ancient manuring: traditional phosphate vs. multi-element analysis of archaeological soil. J Archaeol Sci 42:390–398. https://doi.org/10.1016/j.jas.2013.11.013

    Article  Google Scholar 

  • Nielsen MT, Kristiansen SM, Murphy MW, Scott-Fordsmand JJ (2015) Bonding and solubility of copper along a soil contamination gradient. J Soils Sediments 15:1558–1570. https://doi.org/10.1007/s11368-015-1109-3

    Article  Google Scholar 

  • O’Rourke SM, Minasny B, Holden NM, McBratney AB (2016) Synergistic use of vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry. Soil Sci Soc Am J 80(4):888–899. https://doi.org/10.2136/sssaj2015.10.0361

    Article  Google Scholar 

  • Oonk S, Slomp CP, Huisman DJ (2009a) Geochemistry as an aid in archaeological prospection and site interpretation: current issues and research directions. Archaeol Prospect 62:35–51. https://doi.org/10.1002/arp.344

    Article  Google Scholar 

  • Oonk S, Slomp CP, Huisman DJ, Vriend SP (2009b) Effects of site lithology on geochemical signatures of human occupation in archaeological house plans in the Netherlands. J Archaeol Sci 36(6):1215–1228. https://doi.org/10.1016/j.jas.2009.01.010

    Article  Google Scholar 

  • Parish RM (2011) The application of visible/near-infrared reflectance (VNIR) spectroscopy to chert: a case study from the Dover Quarry sites, Tennessee. Geoarchaeology 26(3):420–439. https://doi.org/10.1002/gea.20354

    Article  Google Scholar 

  • Rehman HU, Knadel M, Jonge LW, Moldrup P, Greve MH, Arthur E (2019) Comparison of cation exchange capacity estimated from vis–NIR spectral reflectance data and a pedotransfer function. Vadose Zone J 18(1):1–8. https://doi.org/10.2136/vzj2018.10.0192

    Article  Google Scholar 

  • Rondelli B, Lancelotti C, Madella M, Pecci A, Balbo A, Pérez JR, Inserra F, Gadekar C, Ontiveros MAC, Ajithprasad P (2014) Anthropic activity markers and spatial variability: an ethnoarchaeological experiment in a domestic unit of Northern Gujarat (India). J Archaeol Sci 41:482–492. https://doi.org/10.1016/j.jas.2013.09.008

    Article  Google Scholar 

  • Rouillard A, Rosen P, Douglas MSV, Pienitz R, Smol JP (2011) A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment. J Paleolimnol 46(2):187–202

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998

    Article  Google Scholar 

  • Sindbæk SM (2018) Northern Emporium: the archaeology of urban networks in Viking Age ribe. In: Raja RSS (ed) Urban Network Evolutions. Towards a high-definition archaeology. Aarhus University Press, Aarhus, pp 161–166

    Google Scholar 

  • Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, MacDonald LM, McLaughlin MJ (2014) The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl Spectrosc Rev 49(2):139–186. https://doi.org/10.1080/05704928.2013.811081

    Article  Google Scholar 

  • Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J (2010) Visible and near infrared spectroscopy in soil science. Adv Agron 107:163–215. https://doi.org/10.1016/S0065-2113(10)07005-7

    Article  Google Scholar 

  • Sulas F, Fleisher J, Wynne-Jones S (2017) Geoarchaeology of urban space in tropical island environments: Songo Mnara, Tanzania. J Archaeol Sci 77:52–63. https://doi.org/10.1016/j.jas.2016.06.002

    Article  Google Scholar 

  • Sulas F, Kristiansen SM, Wynne-Jones S (2019) Soil geochemistry, phytoliths and artefacts from an early Swahili daub house, Unguja Ukuu, Zanzibar. J Archaeol Sci 103(May 2018):32–45. https://doi.org/10.1016/j.jas.2019.01.010

    Article  Google Scholar 

  • Thompson AE, Meredith CR, Prufer KM (2018) Comparing geostatistical analyses for the identification of neighborhoods, districts, and social communities in archaeological contexts: a case study from two ancient Maya centers in southern Belize. J Archaeol Sci 97(June):1–13. https://doi.org/10.1016/j.jas.2018.06.012

    Article  Google Scholar 

  • Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1–2):59–75

    Article  Google Scholar 

  • Vyncke K, Degryse P, Vassilieva E, Waelkens M (2011) Identifying domestic functional areas. Chemical analysis of floor sediments at the Classical-Hellenistic settlement at Düzen Tepe (SW Turkey). J Archaeol Sci 38(9):2274–2292. https://doi.org/10.1016/j.jas.2011.03.034

    Article  Google Scholar 

  • Wadoux AMJ, Marchant BP, Lark RM (2019) Efficient sampling for geostatistical surveys. Eur J Soil Sci 70:975–989. https://doi.org/10.1111/ejss.12797

    Article  Google Scholar 

  • Walkington H (2010) Soil science applications in archaeological contexts: a review of key challenges. Earth Sci Rev 103(3–4):122–134. https://doi.org/10.1016/j.earscirev.2010.09.002

    Article  Google Scholar 

  • Weston D (1996) Soil science and the interpretation of archaeological sites: a soil survey and magnetic susceptibility analysis of altofts ‘Henge’, Normanton, West Yorkshire. Archaeol Prospect 3(1):39–50. https://doi.org/10.1002/(SICI)1099-0763(199603)3:1<39::AID-ARP44>3.0.CO;2-0

    Article  Google Scholar 

  • Wilson CA, Davidson DA, Cresser MS (2005) An evaluation of multielement analysis of historic soil contamination to differentiate space use and former function in and around abandoned farms. The Holocene 15(7):1094–1099. https://doi.org/10.1191/0959683605hl881rr

    Article  Google Scholar 

  • Woodruff LG, Cannon WF, Eberl DD, Smith DB, Kilburn JE, Horton JD, Garrett RG, Klassen RA (2009) Continental-scale patterns in soil geochemistry and mineralogy: Results from two transects across the United States and Canada. Appl Geochem 24(8):1369–1381. https://doi.org/10.1016/j.apgeochem.2009.04.009

    Article  Google Scholar 

  • Zhao C, Zhang Y, Wang CC, Hou M, Li A (2019) Recent progress in instrumental techniques for architectural heritage materials. Herit Sci 7(36). https://doi.org/10.1186/s40494-019-0280-z

Download references

Acknowledgements

The authors would like to thank the entire excavation team working on the Northern Emporium excavation project and the students who assisted with laboratory work. We would also like to thank Maria Knadel for the great guidance and help with vis-NIRS data handling and PLS regressions. Finally, thank you to Ryan Parish and one anonymous reviewer who provided helpful comments and suggestions for this paper.

Funding

The excavation and the Northern Emporium Project were funded by a Semper Ardens grant from the Carlsberg Foundation. This work was supported by the Danish National Research Foundation under the grant DNRF119 - Centre of Excellence for Urban Network Evolutions (UrbNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernille L. K. Trant.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trant, P.L.K., Kristiansen, S.M. & Sindbæk, S.M. Visible near-infrared spectroscopy as an aid for archaeological interpretation. Archaeol Anthropol Sci 12, 280 (2020). https://doi.org/10.1007/s12520-020-01239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01239-3

Keywords

Navigation