Ambrose SH, DeNiro MJ (1986) Reconstruction of African diet using bone collagen carbon and nitrogen isotopes ratios. Nature 319:321–324
Article
Google Scholar
Ambrose SH, DeNiro MJ (1989) Climate and habitat reconstruction using stable carbon and nitrogen isotope ratios of collagen in prehistoric herbivore teeth from Kenya. Quat Res 31:407–422
Article
Google Scholar
Ambrose SH, Norr L (1993) Experimental evidence for the relationship of carbon isotope ratios of whole diet and dietary protien to those of bone collagen and carbonate. In: Lamber JB, Grupe G (eds) Prehistoric human bone: archaeology at the molecular level. Springer-Verlag, Berlin
Google Scholar
Amundson R et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:31–10
Article
Google Scholar
Arens NC, Jahren AH, Amundson R (2000) Can C3 plants faithfully record the carbon isotope composition of atmospheric carbon dioxide? Paleobiology 26:137–164
Austad I (1988) Tree pollarding in western Norway. In: Birks HH, Birks HJB, Emil Kaland P, Moe D (eds) The cultural landscape- past, Present and Future. Cambridge University Press, Cambridge, pp 11–30
Google Scholar
Balasse M, Tresset A (2002) Early weaning of Neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in nitrogen isotope ratios. J Archaeol Sci 29:853–859. https://doi.org/10.1006/jasc.2001.0725
Article
Google Scholar
Balasse M et al (2016) Wild, domestic and feral? Investigating the status of suids in the Romanian Gumelniţa (5th mil. cal BC) with biogeochemistry and geometric morphometrics. J Anthropol Archaeol 42:27–36. https://doi.org/10.1016/j.jaa.2016.02.002
Article
Google Scholar
Berthon R, Kovačiková L, Tresset A, Balasse M (2018) Integration of Linearbandkeramik cattle husbandry in the forested landscape of the mid-Holocene climate optimum: seasonal-scale investigations in Bohemia. J Anthropol Archaeol 51:16–27. https://doi.org/10.1016/j.jaa.2018.05.002
Article
Google Scholar
Bickle P, Whittle AWR (2013) LBK lifeways: a search for differences. In: Whittle AWR, Bickle P (eds) The first farmers of central Europe: diversity in LBK lifeways. vol Cardiff studies in Archaeology. Oxbow Books, Oxford, pp 1–28
Google Scholar
Bogaard A (2002) Questioning the relevance of shifting cultivation to neolithic farming in the Loess belt of Europe. Veg Hist Archaeobotany 11:155–168. https://doi.org/10.1007/s003340200017
Bogaard A (2004) Neolithic farming in Central Europe. An archaeobotanical study of crop husbandry practices. Routledge, London
Book
Google Scholar
Bogaard A (2005) ‘Garden agriculture’ and the nature of early farming in Europe and the Near East. World Archaeol 37:177–196. https://doi.org/10.1080/00438240500094572
Article
Google Scholar
Bogaard A, Heaton THE, Poulton P, Merbach I (2007) The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J Archaeol Sci 34:335–343. https://doi.org/10.1016/j.jas.2006.04.009
Article
Google Scholar
Bogaard A et al (2013) Crop manuring and intensive land management by Europe's first farmers. Proc Natl Acad Sci U S A 110:12589–12594. https://doi.org/10.1073/pnas.1305918110
Article
Google Scholar
Bogaard A, Krause R, Strien H-C (2015) Towards a social geography of cultivation and plant use in an early farming community: Vaihingen an der Enz, south-west Germany. Antiquity 85:395–416. https://doi.org/10.1017/s0003598x00067831
Article
Google Scholar
Bogaard A et al (2016) The Bandkeramik settlement of Vaihingen an der Enz, Kreis Ludwigsburg (Baden-Württemberg): an integrated perspective on land use, economy and diet. Germania 94:1–60. https://doi.org/10.11588/ger.2016.39068
Bogucki P (1988) Forest farmers and stockholders. Early agriculture and its consequences in North-Central Europe. Cambridge Press, Cambridge
Google Scholar
Bramanti B et al (2009) Genetic discontinuity between local hunter-gatherers and Europe’s first farmers. Science 326(5949):137–140. https://doi.org/10.1126/science.1176869
Brinkkemper O, Braadbaart F, van Os B, van Hoesel A, van Brussel AAN, Fernandes R (2018) Effectiveness of different pre-treatments in recovering pre-burial isotopic ratios of charred plants. Rapid Commun Mass Spectrom 32:251–261. https://doi.org/10.1002/rcm.8033
Caseldine C, Hatton J (1993) The development of high moorland on Dartmoor: fire and the influence of Mesolithic activity on vegetation change. In: Chambers FM (ed) Climate change and human impact on the landscape: studies in palaeoecology and environmental archaeology. Chapman and Hall, London, pp 119–131
Google Scholar
Cloern JE (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol Oceanogr 47:713–729. https://doi.org/10.4319/lo.2002.47.3.0713
Codron D, Codron J, Sponheimer M, Bernasconi SM, Clauss M (2011) When animals are not quite what they eat: diet digestibility influences 13C-incorporation rates and apparent discrimination in a mixed-feeding herbivore Canadian. J Zool 89:453–465. https://doi.org/10.1139/z11-010
Colledge S, Conolly J (2007) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut Creek
Google Scholar
Collins RP, Jones MB (1986) The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio 64:121–129
DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351
Article
Google Scholar
Döhle J (1993) Haustierhaltung und Jagd in der Linienbandkeramik-ein. ZfA 27:105–124
Drucker DG, Bridault A, Hobson KA, Szuma E, Bocherens H (2008) Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr Palaeoclimatol Palaeoecol 266:69–82. https://doi.org/10.1016/j.palaeo.2008.03.020
Article
Google Scholar
Dytham C (2003) Choosing and using statistics: a biologists guide, 2nd edn. Blackwell Science, Oxford.
Ebersbach R (2013) Quantitative approaches to reconstructing prehistoric stock breeding. In: Kerig T, Zimmermann A (eds) Economic archaeology: from structure to performance in European archaeology. Habelt, Bonn, pp 143–160
Eckelmann R, Schmölcke U, Makarewicz CA (in press) Chapter 5.4 The animal remains from the LBK and Želiezovce settlement site of Vráble. In: Furholt M, Cheben I, Müller J, Bistáková A, Wunderlich M & Müller-Scheeßel N (eds) Archaeology in the Zitava Valley 1 - the LBK settlement site of Vráble. SideStone Press, Leiden
Fan R, Morozumi T, Maximov TC, Sugimoto A (2018) Effect of floods on the δ13C values in plant leaves: a study of willows in Northeastern Siberia. PeerJ 6:e5374. https://doi.org/10.7717/peerj.5374
Farquhar GD, Ehleringer J, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537
Article
Google Scholar
Fehér A (2018) Vegetation history and cultural landscapes case studies from South-west Slovakia. Springer Geography, Cham
Filipović D, Kroll H, Kirleis W (in press) Chapter 5.5 Archaeobotanical remains from the LBK and Želiezovce settlement site of Vráble. In: Furholt M, Cheben I, Müller J, Bistáková A, Wunderlich M & Müller-Scheeßel N (eds) Archaeology in the Zitava Valley 1 - the LBK settlement site of Vráble. SideStone Press, Leiden
Fiorentino G, Ferrio JP, Bogaard A, Araus JL, Riehl S (2014) Stable isotopes in archaeobotanical research. Veg Hist Archaeobotany 24:215–227. https://doi.org/10.1007/s00334-014-0492-9
Article
Google Scholar
Fraser RA, Bogaard A, Heaton T, Charles M, Jones G, Christensen BT, Halstead P, Merbach I, Poulton PR, Sparkes D, Styring AK (2011) Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. J Archaeol Sci 38:2790–2804
Fraser RA, Bogaard A, Schäfer M, Arbogast R, Heaton THE (2013) Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeol 45:492–517. https://doi.org/10.1080/00438243.2013.820649
Article
Google Scholar
Furholt M, Bátora J, Cheben I, Kroll H, Tóth P (2014) Vráble-Velké Lehemby: Eine Siedlungsgruppe der Linearkeramik in der Südwestslowakei. Vorbericht über die Untersuchungen der Jahre 2010 und 2012 und Deutungsansätze. SlovArch 62:227–266
Furholt M, Müller-Scheeßel N, Wunderlich M, Cheben I, Müller J (2020) Communality and discord in an early Neolithic settlement agglomeration: the LBK site of Vráble, Southwest Slovakia. Camb Archaeol J 30:469–489. https://doi.org/10.1017/S0959774320000049
Article
Google Scholar
Gillis R, Bréhard S, Bălăşescu A, Ughetto-Monfrin J, Popovici D, Vigne J-D, Balasse M (2013) Sophisticated cattle dairy husbandry at Borduşani-Popină (Romania, fifth millennium BC): the evidence from complementary analysis of mortality profiles and stable isotopes. World Archaeol 45:447–472. https://doi.org/10.1080/00438243.2013.820652
Article
Google Scholar
Gillis RE, Kovačiková L, Bréhard S, Guthmann E, Vostrovská I, Nohálová H, Arbogast RM, Domboróczki L, Pechtl J, Anders A, Marciniak A, Tresset A, Vigne JD (2017) The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc R Soc Lond B Biol Sci 284. https://doi.org/10.1098/rspb.2017.0905
Gillis RE, Gaastra JS, Vander Linden M, Vigne JD (2019) A species specific investigation into sheep and goat husbandry during the early European Neolithic. Environ Archaeol. https://doi.org/10.1080/14614103.2019.1615214
Gillis RE, Kendall IK, Balasse M, Evershed RP (in press) Conduite de l’élevage dans un environnement forestier à Bischoffsheim: une approche biogéochimique. In: Lefranc Ph, Arbogast R-M (eds) Bischoffsheim : un village du Néolithique ancien en basse Alsace (France). Archéologiques, Musée national d'Histoire et d'Art du Grand Duché du Luxembourg, Luxembourg
Golitko M, Keeley LH (2006) Beating ploughshares back into swords: warfare in the Linearbandkeramik. Antiquity 81:332–342. https://doi.org/10.1017/S0003598X00095211
Gregg S (1988) Foragers and farmers: population interaction and agriculture expansion in prehistoric Europe. University of Chicago, Chicago
Google Scholar
Gronenborn D (2003) Migration, acculturation and culture change in western temperate Eurasia, 6500-5000cal BC. Doc 30:79–9. https://doi.org/10.4312/dp.30.3
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Handley LL et al (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Funct Plant Biol 26:185–199. https://doi.org/10.1071/pp98146
Article
Google Scholar
Heaton THE, Vogel JC, von al Chevallerie G, Collet G (1986) Climatic influence on the isotopic composition of bone collagen. Nature 322:822–823. https://doi.org/10.1016/0031-0182(94)90096-5
Hedges R et al (2013) The supra-regional perspective. In: Whittle AWR, Bickle P (eds) The first farmers of Central Europe: diversity in LBK lifeways. Oxbow, Oxford, pp 343–384
Google Scholar
Innes JB, Blackford JJ (2003) The ecology of Late Mesolithic woodland disturbances: model testing with fungal spore assemblage data. J Archaeol Sci 30:185–194. https://doi.org/10.1006/jasc.2002.0832
Article
Google Scholar
Ivanova M, De Cupere B, Ethier J, Marinova E (2018) Pioneer farming in southeast Europe during the early sixth millennium BC: climate-related adaptations in the exploitation of plants and animals. PLoS One 13:e0197225. https://doi.org/10.1371/journal.pone.0197225
Article
Google Scholar
Jim S, Ambrose SH, Evershed RP (2004) Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochim Cosmochim Acta 68:61–72. https://doi.org/10.1016/s0016-7037(03)00216-3
Article
Google Scholar
Johnson EV, Timpson A, Thomas MG, Outram AK (2018) Reduced intensity of bone fat exploitation correlates with increased potential access to dairy fats in early Neolithic Europe. J Archaeol Sci 94:60–69. https://doi.org/10.1016/j.jas.2018.04.001
Article
Google Scholar
Kalis AJ, Merkt J, Wunderlich J (2003) Environmental changes during the Holocene climatic optimum in central Europe - human impact and natural causes. Quat Sci Rev 22:33–79. https://doi.org/10.1016/s0277-3791(02)00181-6
Article
Google Scholar
Kendall IP, Lee MRF, Evershed RP (2018) The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web. STAR 3:135–145. https://doi.org/10.1080/20548923.2018.1459361
Kendall IP, Woodward P, Clark JP, Styring AK, Hanna JV, Evershed RP (2019) Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry 161:130–138. https://doi.org/10.1016/j.phytochem.2019.01.012
Knoepp JD, Taylor RS, Boring LR, Miniat CF (2015) Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles. Soil Sci Soc Am J 79:1470–1481. https://doi.org/10.2136/sssaj2015.03.0101
Article
Google Scholar
Kreuz A (2007) Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements? Veg Hist Archaeobotany 17:51–64. https://doi.org/10.1007/s00334-007-0110-1
Article
Google Scholar
Kreuz A, Schäfer E (2011) Weed finds as indicators for the cultivation regime of the early Neolithic Bandkeramik culture? Veg Hist Archaeobotany 20:333–348. https://doi.org/10.1007/s00334-011-0294-2
Article
Google Scholar
Kreuz A, Marinova E, Schäfer E, Wiethold J (2005) A comparison of early Neolithic crop and weed assemblages from the Linearbandkeramik and the Bulgarian Neolithic cultures: differences and similarities. Veg Hist Archaeobotany 14:237–258. https://doi.org/10.1007/s00334-005-0080-0
Article
Google Scholar
Lazaridis I et al (2016) Genomic insights into the origin of farming in the ancient Near East. Nature 536:419–424. https://doi.org/10.1038/nature19310
Article
Google Scholar
Lipson M et al (2017) Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551:368–372. https://doi.org/10.1038/nature24476
Article
Google Scholar
Liu X-Y, Koba K, Makabe A, Liu C-Q (2014) Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate. Front Plant Sci 5:1–14. https://doi.org/10.3389/fpls.2014.00355
Article
Google Scholar
Lüning J (2000) Steinzeitliche Bauern in Deutschland. Die Landwirtschaft im Neolithikum. Habelt, Bonn. 285p
Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the Great Hungarian Plain. J Biogeogr 37:915–935. https://doi.org/10.1111/j.1365-2699.2009.02261.x
Makarewicz CA (2014) Winter pasturing practices and variable fodder provisioning detected in nitrogen (δ15N) and carbon (δ13C) isotopes in sheep dentinal collagen. J Archaeol Sci 41:502–510. https://doi.org/10.1016/j.jas.2013.09.016
Makarewicz CA (2015) Winter is coming: seasonality of ancient pastoral nomadic practices revealed in the carbon (δ13C) and nitrogen (δ15N) isotopic record of Xiongnu caprines. Archaeol Anthropol Sci 9:405–418. https://doi.org/10.1007/s12520-015-0289-5
Manning K, Downey SS, Colledge S, Conolly J, Stopp B, Dobney K, Shennan S (2013a) The origins and spread of stock-keeping: the role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity 87:1046–1059
Article
Google Scholar
Manning K, Stopp B, Colledge S, Downey SS, Connolly J, Dobney K, Shennan S (2013b) Animal exploitation in the Early Neolithic of the Balkans and Central Europe. In: Colledge S, Conolly J, Dobney K, Manning K, Shennan S (eds) The origins and spread of domestic animals in Southwest Asia and Europe. Left coast press, Califonia, pp 237–252
Google Scholar
Marciniak A (2005) Placing animals in the Neolithic: social zooarchaeology of prehistoric farming communities. University College London Press, London
Google Scholar
Marciniak A (2013) Origin of stock-keeping and the spread of animal exploitation strategies in the early and middle Neolithic of the North European Plain. In: Colledge S, Conolly J, Dobney K, Manning K, Shennan S (eds) The origins and spread of domestic animals in Southwest Asia and Europe. Left Coast Press, Walnut Creek, pp 221–236
Google Scholar
Martinelli LA et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:46–65
Google Scholar
Meadows J, Müller-Scheeßel N, Cheben I, Agerskov Rose H, Furholt M (2019) Temporal dynamics of Linearbandkeramik houses and settlements, and their implications for detecting the environmental impact of early farming. Holocene. https://doi.org/10.1177/0959683619857239
Minagawa M, Wada E (1984) Stepwise emirchment of 15N along food chains : further evidence and the relation between d15N and animal age. Geochim Cosmochim Acta 48:1135–1140
Article
Google Scholar
Moskal-del Hoyo M (2013) Mid-Holocene forests in eastern Hungary: new anthracological data. Rev Paleobot Palynol 193:70–81
Article
Google Scholar
Müller-Scheeßel N, Cheben I, Furholt M (2020) The LBK site of Vráble/Southwest Slovakia: results of the excavation season 2016. BerRGK 97:83–130
Nielsen AB et al (2012) Quantitative reconstructions of changes in regional openness in north-Central Europe reveal new insights into old questions. Quat Sci Rev 47:131–149. https://doi.org/10.1016/j.quascirev.2012.05.011
Article
Google Scholar
Nitsch EK, Charles M, Bogaard A (2015) Calculating a statistically robust δ13C and δ15N offset for charred cereal and pulse seeds. STAR 1:1–8. https://doi.org/10.1179/2054892315y.0000000001
Noe-Nygaard N, Price TD, Hede SU (2005) Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. J Archaeol Sci 32:855–871. https://doi.org/10.1016/j.jas.2005.01.004
Oelze VM, Siebert A, Nicklisch N, Meller H, Dresely V, Alt KW (2011) Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J Archaeol Sci 38:270–279. https://doi.org/10.1016/j.jas.2010.08.027
Article
Google Scholar
O'Leary MH (1988) Carbon isotopes in photosynethsis: fractionation techniques may reveal new aspects of carbon dynamics in plants. Bioscience 38:328–335
Article
Google Scholar
Pavlů I (2005) The Neolithisation of Central Europe. ArchRoz LVII:293–302
Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? Holocene 25:716–726. https://doi.org/10.1177/0959683614566218
Rasmussen P (1993) Analysis of goat/sheep faeces from Egolzwil 3 Switzerland: evidence for branch and twig foddering of livestock in the Neolithic. J Archaeol Sci 20: 479–502. https://doi.org/10.1006/jasc.1993.1030.
Read H (2003) A study of practical pollarding techniques in northern Europe. http://www.ancienttreeforum.co.uk/resources/other-publications/.Accessed Sept 2017
Robbins CT, Felicetti LA, Sponheimer M (2005) The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144:534–540. https://doi.org/10.1007/s00442-005-0021-8
Russell N (1998) Cattle as wealth in Neolithic Europe: where's the beef? In: Bailey D (ed) The archaeology of value: essays on prestige and the process of valuation, vol 730. Vol BAR international, Oxford, pp. 42-54.
Salque M, Bogucki P, Pyzel J, Sobkowiak-Tabaka I, Grygiel R, Szmyt M, Evershed RP (2013) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493(7433): 522-525. https://doi.org/10.1038/nature11698
Saqalli M, Salavert A, Bréhard S, Bendrey R, Vigne J-D, Tresset A (2014) Revisiting and modelling the woodland farming system of the early Neolithic linear pottery culture (LBK), 5600–4900 B.C. Veg Hist Archaeobotany 23:37–50. https://doi.org/10.1007/s00334-014-0436-4
Article
Google Scholar
Schnyder H, Schwertl M, Auerswald K, Schaufele R (2006) Hair of grazing cattle provides an integrated measure of the effects of site conditions and interannual weather variability on δ13C of temperate humid grassland. Glob Chang Biol 12:1315–1329. https://doi.org/10.1111/j.1365-2486.2006.01169.x
Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639
Article
Google Scholar
Schroedter TM (in press) Chapter 5.6 little but worth it – Anthracological data and thoughts on forestation in the surroundings of the LBK and Želiezovce settlement site of Vráble. In: Furholt M, Cheben I, Müller J, Bistáková A, Wunderlich M & Müller-Scheeßel N (eds) Archaeology in the Zitava Valley 1 - the LBK settlement site of Vráble. SideStone Press, Leiden
Sealy J, Van der Merwe NJ, Lee Thorp JA, Lanham JL (1987) Nitrogen isotope ecology in southern Africa: implications for environment and dietray tracking. Geochim Cosmochim Acta 51:2707–2717
Article
Google Scholar
Shennan S, Downey SS, Timpson A, Edinborough K, Colledge S, Kerig T, Manning K, Thomas MG (2013) Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun 4:2486. https://doi.org/10.1038/ncomms3486
Article
Google Scholar
Simmons IG (1996) The environmental impact of later Mesolithic cultures. Edinburgh University Press, Edinburgh
Google Scholar
Smith BN, Epstein HE (1971) Two categories of 13C/12C ratios for higher plants. Annu Rev Plant Biol 47:380–384
Šolcová A et al (2018) Early and middle Holocene ecosystem changes at the Western Carpathian/Pannonian border driven by climate and Neolithic impact. Boreas. https://doi.org/10.1111/bor.12309
Sponheimer M et al (2003a) An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores Canadian. J Zool 81:871–876. https://doi.org/10.1139/z03-066
Article
Google Scholar
Sponheimer M et al (2003b) Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. Int J Osteoarchaeol 13:80–87. https://doi.org/10.1002/oa.655
Article
Google Scholar
Stevens RE, Lister AM, Hedges RE (2006) Predicting diet, trophic level and palaeoecology from bone stable isotope analysis: a comparative study of five red deer populations. Oecologia 149:12–21. https://doi.org/10.1007/s00442-006-0416-1
Article
Google Scholar
Styring AK, Fraser RA, Bogaard A, Evershed RP (2014) The effect of manuring on cereal and pulse amino acid δ15N values. Phytochemistry 102:40–45. https://doi.org/10.1016/j.phytochem.2014.02.001
Article
Google Scholar
Styring A, Rösch M, Stephan E, Stika H-P, Fischer E, Sillmann M, Bogaard A (2017) Centralisation and long-term change in farming regimes: comparing agricultural practices in Neolithic and Iron Age south-west Germany. Proc. Prehist. Soc. 83:357–381. https://doi.org/10.1017/ppr.2017.3
Tieszen LT (1991) Natural variations in the carbon isotope values of plants: implications for archaeology, ecology and paleoecology. J Archaeol Sci 18:227–248
Article
Google Scholar
Tresset A, Vigne JD (2001) La chasse, principal élément structurant la diversité des faunes archéologiques du Néolithique ancien, en Europe tempérée et en Méditerranée: tentative d’interprétation fonctionnelle Paper presented at the Rôle et statut de la chasse dans le Néolithique ancien danubien (5500-4900 av. J.-C.) In: Arbogast R-M Jeunesse C, Schibler J (Eds) Rôle et statut de la chasse dans le Néolithique ancien danubien (5500–4900 av. J.-C.), Marie Leidorf, Rahden/West. (2001), p. 129–151
Tuross N, Fogel ML, Hare PE (1988) Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochim Cosmochim Acta 52:929–935. https://doi.org/10.1016/0016-7037(88)90364-x
Article
Google Scholar
Vaiglova P et al (2014a) An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: a new look at Neolithic farming. J Archaeol Sci 42:201–215. https://doi.org/10.1016/j.jas.2013.10.023
Article
Google Scholar
Vaiglova P, Snoeck C, Nitsch E, Bogaard A, Lee-Thorp J (2014b) Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains. Rapid Commun Mass Spectrom 28:2497–2510. https://doi.org/10.1002/rcm.7044
Article
Google Scholar
Van der Merwe NJ, Medina E (1991) The canopy effect carbon isotope ratios and foodwebs in amazonia. J Archaeol Sci 18:249–259
Article
Google Scholar
van Klinken GJ (1999) Bone collagen quality indicators for Palaeodietary and radiocarbon measurements. J Archaeol Sci 26:687–695
Article
Google Scholar
Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. https://doi.org/10.1007/s00442-003-1270-z
Vera F (2000) Grazing ecology and Forest history. Cabi publishing, Oxfordshire
Book
Google Scholar
Vogel JC (1978) Recycling of carbon in a forest environment. Acta Oecologica, Oecologia Plant 13:89–94
Zanon M, Davis BAS, Marquer L, Brewer S, Kaplan JO (2018) European Forest cover during the past 12,000 years: a palynological reconstruction based on modern analogs and remote sensing. Front Plant Sci 9:253. https://doi.org/10.3389/fpls.2018.00253