Skip to main content
Log in

Ceramic technology. How to reconstruct and describe pottery-forming practices

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The article discusses the various options for reconstructing pottery-forming techniques and for making reliable interpretations of forming practices based on archaeological evidence. It begins with a consideration of a classification of forming techniques that provides a framework with a suitable resolution within which observed phenomena can be understood. Such a classification should reflect meaningful distinctions among the forming practices: (a) in terms of the potter’s behaviour and also (b) in terms of the visibility of the effects in the archaeological record. The description of the forming practice reflects the fact that the forming method is a complex series of actions and often comprises more than one technique. The individual techniques are combined in two ways: (a) sequential, to create a single part, and (b) segmental, to create different parts. The relevant diagnostic attributes of pottery-forming practices are related to the structure and shape/size of the ceramics. They can be divided into five categories: (a) surface morphology and topography, (b) variation in the wall thickness, (c) remnants of segmental joints, (d) specific fractures, and (e) alignment and orientation of the components of the ceramic body. Two sources of misinterpretation of the diagnostic features define two types of ambiguous diagnostic features: (a) features that are correlated with a particular technique but are not necessarily a consequence of this technique and (b) features that are a necessary consequence of a particular technique but could also be a consequence of another technique. The analysis is intended to sufficiently narrow the range of possible alternatives by excluding those alternatives that cannot be the cause of the observed phenomena. Many features are randomly preserved on a small proportion of the pottery fragments, and thus, it is difficult to draw statistical inferences based on the evidence of these features. One diagnostic feature is prominent in this respect—the orientation of the components of the ceramic body. This can be observed and measured for every ceramic fragment. The analytical methods comprise direct visual observation and various imaging methods. Direct visual observation is carried out at three scales: macro, meso, and micro. Different scales of observation bring different types of information. Their use in combination is optimum for a reliable analysis. Various imaging methods can display what is difficult or even impossible to observe directly or what is observable at the cost of a destructive impact on the studied object. The image data can represent either the surfaces of the investigated objects or their internal structure, and 2D or 3D techniques are used in both cases. The observations related to pottery forming are most commonly classified or described in a given set of qualitative categories. The advantage of the qualitative approach is that the complex phenomena can be captured using appropriately defined categories. The quantitative approach relies on a measurable parameter or set of parameters to characterize the diagnostic features. The exact measurements have the potential to refine the analysis based on descriptive categories and create a stronger basis for scientific argumentation. However, in many cases, quantification reduces the complexity of the diagnostic features to just several aspects that can be measured. Therefore, it is important to combine the strengths of both of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this review article as no new data were created or analysed in this study.

References

  • Aloupi-Siotis, E. (2020). Ceramic technology. How to characterise black Fe-based glass-ceramic coatings. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01134-x

  • Arnold DE (1985) Ceramic theory and cultural process. Cambridge University Press, Cambridge

    Google Scholar 

  • Arnold D (1993) Techniques and traditions of manufacture in the pottery of ancient Egypt. In: Arnold D, Bourriau J (eds) An introduction to Ancient Egyptian pottery. Von Zabern, Mainz am Rhein, pp 11–102

  • Artal-Isbrand P, Klausmeyer P (2013) Evaluation of the relief line and the contour line on Greek red-figure vases using reflectance transformation imaging and three-dimensional laser scanning confocal microscopy. Stud Conserv 58:338–359. https://doi.org/10.1179/2047058412Y.0000000077

    Article  Google Scholar 

  • Balfet H (1953) Note sur le façonnage des poteries préhistoriques. Bull Société Préhistorique Fr 50:211–217. https://doi.org/10.3406/bspf.1953.3031

    Article  Google Scholar 

  • Balfet H (1966) La céramique comme document archéologique. Bull Société Préhistorique Fr Études Trav 63:279–310

    Google Scholar 

  • Balfet H (1984) Methods of formation and shape of pottery. In: van der Leeuw SE, Pritchard AC (eds) The many dimensions of pottery: ceramics in archaeology and anthropology. Institute for Pre- and Proto-history, University of Amsterdam, Amsterdam, pp 171–197

    Google Scholar 

  • Balfet H, Fauvet-Berthelot M-F, Monzon S (1983) Pour la normalisation de la description des poteries. Editions du Centre national de la recherche scientifique, Paris

    Google Scholar 

  • Barreau J-B, Nicolas T, Bruniaux G et al (2014) Ceramics fragments digitization by photogrammetry, Reconstructions and applications. In: In: International Conference on Culturage Heritage, 2014th edn. EuroMed, Lemessos

  • Berg I (2007) Meaning in the making: the potter’s wheel at Phylakopi, Melos (Greece). J Anthropol Archaeol 26:234–252. https://doi.org/10.1016/j.jaa.2006.10.001

    Article  Google Scholar 

  • Berg I (2008) Looking through pots: recent advances in ceramics X-radiography. J Archaeol Sci 35:1177–1188. https://doi.org/10.1016/j.jas.2007.08.006

    Article  Google Scholar 

  • Berg I (2009) X-radiography of Knossian Bronze Age vessels: assessing our knowledge of primary forming techniques. Annu Br Sch Athens 104:137–173

    Google Scholar 

  • Berg I, Ambers J (2011) Identifying forming techniques in Knossian Bronze Age pottery: the potential of X-radiography. In: Vlasaki M, Papadopoulou E (eds) Proceedings of the 10th International Cretological Congress, Chania, 2006. Etairia Kritikon Istorikon Meleton, Heraklion, pp 367–380

    Google Scholar 

  • Berg I, Ambers J (2017) X-radiography of archaeological ceramics. In: Hunt AMW (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, pp 544–564

    Google Scholar 

  • Bernardini F, Tuniz C, Zanini F (2019) X-ray computed microtomography for paleoanthropology, archaeology, and cultural heritage. In: Lazzara G, Fakhrullin R (eds) Nanotechnologies and nanomaterials for diagnostic, conservation and restoration of Cultural Heritage. Elsevier, pp 25–45

  • Bhushan B (2001) Surface roughness analysis and measurement techniques. In: Bhushan B (ed) Modern tribology handbook. CRC Press, Boca Raton, pp 49–120

    Google Scholar 

  • Blackman MJ, Stein GJ, Vandiver PB (1993) The standardization hypothesis and ceramic mass production: technological, compositional, and metric indexes of craft specialization at tell Leilan, Syria. Am Antiq 58:60–80

    Google Scholar 

  • Bordet P, Courtois L (1967) Etude géologique des céramiques anciennes. Les techniques de fabrication Comptes Rendus Académie Sci Paris 265(D):1665–1667

    Google Scholar 

  • Borodich FM, Evans HP (2013) Fractal characterization of surfaces. In: Wang QJ, Chung Y-W (eds) Encyclopedia of tribology. Springer US, Boston, pp 1246–1249

    Google Scholar 

  • Bourdieu P (1977) Outline of a theory of practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Bril B (2002) L’apprentissage de gestes techniques: ordre de contraintes et variations culturelles. In: Bril B, Roux V (eds) Le geste technique. Réflexions méthodologiques et anthropologiques. Editions érès, Ramonville Saint-Agne, pp 113–150

  • Bruzzone AAG, Montanaro JS, Ferrando A, Lonardo PM (2004) Wavelet analysis for surface characterisation: an experimental assessment. CIRP Ann 53:479–482. https://doi.org/10.1016/S0007-8506(07)60744-6

    Article  Google Scholar 

  • Budden S (2008) Skill amongst the sherds: understanding the role of skill in the Early to Late Middle Bronze Age in Hungary. In: Berg I (ed) Breaking the Mould: challenging the past through pottery. Archaeopress, Oxford, pp 1–18

    Google Scholar 

  • Capel J, Delgado Calvo-Flores R, Párraga J, Guardiola JL (1995) Identificación de técnicas de manufactura y funcionalidad de vasijas cerámicas en estudios de lámina delgada. Complutum 6:311–318

    Google Scholar 

  • Cardew M (2002) Pioneer pottery. A&C Black, London

    Google Scholar 

  • Carmichael PH (1986) Ñasca pottery construction. Ñawpa Pacha J Andean Archaeol 24:31–48

    Google Scholar 

  • Carr C (1990) Advances in ceramic radiography and analysis: applications and potentials. J Archaeol Sci 17:13–34. https://doi.org/10.1016/0305-4403(90)90013-U

    Article  Google Scholar 

  • Carr C, Riddick EB Jr (1990) Advances in ceramic radiography and analysis: laboratory methods. J Archaeol Sci 17:35–66. https://doi.org/10.1016/0305-4403(90)90014-V

    Article  Google Scholar 

  • Carter B (2016) Mastering the potter’s wheel: techniques, tips, and tricks for potters. Voyageur Press, Minneapolis

    Google Scholar 

  • Chen X, Raja J, Simanapalli S (1995) Multi-scale analysis of engineering surfaces. Int J Mach Tools Manuf 35:231–238. https://doi.org/10.1016/0890-6955(94)P2377-R

    Article  Google Scholar 

  • Choleva M (2012) The first wheelmade pottery at Lerna: wheel-thrown or wheel-fashioned? Hesperia J Am Sch Class Stud Athens 81:343–381. https://doi.org/10.2972/hesperia.81.3.0343

    Article  Google Scholar 

  • Courty MA, Roux V (1995) Identification of wheel throwing on the basis of ceramic surface features and microfabrics. J Archaeol Sci 22:17–50. https://doi.org/10.1016/S0305-4403(95)80161-8

    Article  Google Scholar 

  • Cuomo di Caprio N (2017) Ceramics in archaeology: from prehistoric to medieval times in Europe and the Mediterranean: ancient craftsmanship and modern laboratory techniques. L’Erma di Bretschneider, Roma

    Google Scholar 

  • de Lapérouse, J-F (2020). Ceramic musealisation: how ceramics are conserved and the implications for research. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01139-6

  • Digby A (1948) Radiographic examination of Peruvian pottery. In: gby, A., 1948. Radiographic examination of Peruvian pottery techniques. In: Actes du xxviii Congre’s International des Ame’ricanistes. Muse’e de l’Homme, Paris, pp 605–608

  • Dobres M-A (2000) Technology and social agency: outlining the practice framework for archaeolgy. Blackwell, Oxford; Malden

  • Dobrzańska H, Piekarczyk J (2005) Celtic grey pottery from Poland: thrown or not thrown? In: Dobrzańska H, Megaw V, Poleska P (eds) Celts on the margin. Institute of Archaeology and Ethnology of the Polish Academy of Sciences, Kraków, pp 207–211

    Google Scholar 

  • Doherty SK (2015) Origins and use of the potter’s wheel in ancient Egypt. Archaeopress, Oxford

    Google Scholar 

  • Doneus M (2013) Openness as visualization technique for interpretative mapping of airborne lidar derived digital terrain models. Remote Sens 5:6427–6442. https://doi.org/10.3390/rs5126427

    Article  Google Scholar 

  • Drost D (1967) Töpferei in Afrika. Technologie, Akademie-Verlag, Berlin

    Google Scholar 

  • Dupont-Delaleuf A (2011) Styles techniques des céramiques de la protohistoire en Asie Centrale: méthodologie et études de cas. Ph.D. thesis, Université Paris Ouest La Défense

  • Eramo G (2020). Ceramic technology. How to recognize clay processing Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01132-z

  • Felicissimo MP, Peixoto JL, Bittencourt C, Tomasi R, Houssiau L, Pireaux JJ, Rodrigues-Filho UP (2010) SEM, EPR and ToF-SIMS analyses applied to unravel the technology employed for pottery-making by pre-colonial Indian tribes from Pantanal, Brazil. J Archaeol Sci 37:2179–2187. https://doi.org/10.1016/j.jas.2010.03.015

    Article  Google Scholar 

  • Felts WM (1942) A petrographic examination of potsherds from ancient Troy. Am J Archaeol 46:237–244. https://doi.org/10.2307/499386

    Article  Google Scholar 

  • Fewkes VJ (1940) Methods of pottery manufacture. Am Antiq 6:172–173. https://doi.org/10.2307/275838

    Article  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Fragkos S, Tzimtzimis E, Tzetzis D, Dodun O, Kyratsis P (2018) 3D laser scanning and digital restoration of an archaeological find. MATEC Web Conf 178:03013. https://doi.org/10.1051/matecconf/201817803013

    Article  Google Scholar 

  • Franchet L (1911) Céramique primitive: introduction à l’étude de la technologie. P. Geuthner, Paris

    Google Scholar 

  • Franken HJ (1971) Analysis of methods of potmaking in archaeology. Harv Theol Rev 64:227–255

    Google Scholar 

  • Franken HJ, Kalsbeek J (1969) Excavations at Tell Deir Allā, 1: a stratigraphical and analytical study of the early Iron Age pottery. Brill, Leiden

    Google Scholar 

  • Gallay A (2012) Potières du Sahel: à la découverte des traditions céramiques de la boucle du Niger (Mali). Infolio, Gollion

    Google Scholar 

  • Galli A, Sibilia E, Martini M (2020). Ceramic chronology by luminescence dating. How and when it is possible to date ceramic artefacts Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01140-z

  • García Rosselló J (2007) La Etnoarqueología como experimentación: identificación de marcas de manufactura en cerámicas modeladas a mano. In: Ramos Sainz ML, González Urquijo JE, Baena Preysler J (eds) Arqueología experimental en la Península Ibérica: investigación, didáctica y patrimonio. Asociación Española de Arqueología Experimental, Santander, pp 45–57

    Google Scholar 

  • Garrigós JBI, Fernández MMI (2017) Designing rigorous research: integrating science and archaeology. In: Hunt AMW (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, pp 19–47

    Google Scholar 

  • Gelbert A (1994) Tour et tournette en Espagne: recherche de macrotraces significatives des différentes techniques et méthodes de façonnage. In: Audouze F, Binder D (eds) Terre cuite et société. La céramique, document technique, économique, culturel. APDCA, Juan-les-Pins, pp 59–74

  • Gelbert A (2003) Traditions céramiques et emprunts techniques dans la vallée du fleuve Sénégal. Maison des sciences de l’homme, Epistèmes

    Google Scholar 

  • Gelbert A (2005) Reconnaissance des techniques et des méthodes de façonnage par l’analyse sed macrotraces: étude ethnoarchéologique dans la vallée du Sénégal. In: Livingstone Smith A, Bosquet D, Martineau R (eds) Pottery manufacturing processes: reconstruction and interpretation. Archaeopress, Oxford, pp 67–78

    Google Scholar 

  • Gibbs KT (2008) Understanding community: a comparison of three Late Neolithic pottery assemblages from Wadi Ziqlab, Jordan. Ph.D. thesis, Department of Anthropology, University of Toronto

  • Giddens A (1984) The constitution of society: outline of the theory of structuration. University of California Press, Berkeley

    Google Scholar 

  • Gifford EW (1928) Pottery-making in the Southwest. University of California Press, Berkeley

    Google Scholar 

  • Gliozzo, E. (2020a) Ceramics investigation. Research questions and sampling criteria. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01128-9

  • Gliozzo, E. (2020b) Ceramic technology. How to reconstruct the firing process. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01133-y

  • Gomart L (2011) Pottery traditions and manufacturing organization in the early neolithic: a method for the technological study of Linearbandkeramik vases in habitat contexts in the Aisne Valley (France). Spraw Archeol 63:189–201

    Google Scholar 

  • Gomart L (2014) Traditions techniques & production céramique au Néolithique ancien: étude de huit sites rubanés du nord est de la France et de Belgique. Sidestone Press, Leiden

    Google Scholar 

  • Gomart L, Weiner A, Gabriele M et al (2017) Spiralled patchwork in pottery manufacture and the introduction of farming to Southern Europe. Antiquity 91:1501–1514. https://doi.org/10.15184/aqy.2017.187

    Article  Google Scholar 

  • Gosselain OP (1995) Identités techniques: le travail de la poterie au Cameroun méridional. Université libre de Bruxelles

  • Gosselain OP (2000) Materializing identities: an African perspective. J Archaeol Method Theory 7:187–217. https://doi.org/10.1023/A:1026558503986

    Article  Google Scholar 

  • Greene AF, Hartley CW, Doumani Dupuy PN, Chinander M (2017) The digital radiography of archaeological pottery: program and protocols for the analysis of production. J Archaeol Sci 78:120–133. https://doi.org/10.1016/j.jas.2016.11.007

    Article  Google Scholar 

  • Greenwell W (1877) British barrows: a record of the examination of sepulchral mounds in various parts of England. Clarendon Press, Oxford

    Google Scholar 

  • Gregor M, Čambal R (2009) Preliminary mineralogical and petrographic study of La Tène household ceramics from Bratislava’s oppidum (Slovakia). In: Biró KT, Szilágyi V, Kreiter A (eds) Vessels inside and outside: proceedings of the conference EMAC’07: 9th European Meeting on Ancient Ceramics: 24–27 October 2007, Hungarian National Museum, Budapest, Hungary. Hungarian National Museum, Budapest, pp 255–264

  • Gualtieri, S. (2020). Ceramic raw materials. How to establish the technological suitability of a raw material. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01135-w

  • Guthe CE (1925) Pueblo pottery making: a study at the village of San Ildefonso. Yale University Press, New Haven

    Google Scholar 

  • Hamer F, Hamer J (2004) The potter’s dictionary of materials and techniques. A & C Black; University of Pennsylvania Press, London

    Google Scholar 

  • Hamon G, Querre G, Aubert J-G (2005) Techniques de fabrication de céramiques du Néolithique moyen I en Armorique (France). In: Livingstone Smith A, Bosquet D, Martineau R (eds) Pottery manufacturing processes: reconstruction and interpretation. Archaeopress, Oxford, pp 127–138

    Google Scholar 

  • Hein A, Kilikoglou V (2020). Ceramic raw materials. How to recognize them and locate the supply basins Chemistry. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01129-8

  • Hegmon M, Nelson MC, Ennes MJ (2000) Corrugated pottery, technological style, and population movement in the Mimbres region of the American southwest. J Anthropol Res 56:217–240

    Google Scholar 

  • Henderson J, Ma H, Cui J, Ma R, Xiao H (2020). Isotopic investigations of Chinese ceramics. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01138-7

  • Henrickson RC (1991) Wheelmade or wheel-finished? Interpretation of ‘wheelmarks’ on pottery. In: Druzik JR, Vandiver PB, Wheeler G (eds) Materials issues in art and archaeology II. Materials Research Society, Pittsburgh, pp 523–541

    Google Scholar 

  • Hiemstra JF, Rijsdijk KF (2003) Observing artificially induced strain: implications for subglacial deformation. J Quat Sci 18:373–383. https://doi.org/10.1002/jqs.769

    Article  Google Scholar 

  • Huysecom E (1994) Identification technique des céramiques africaines. In: Audouze F, Binder D (eds) Terre cuite et société. La céramique, document technique, économique, culturel. APDCA, Juan-les-Pins, pp 31–34

  • Ionescu C, Fischer C, Hoeck V, Lüttge A (2019) Discrimination of ceramic surface finishing by vertical scanning interferometry. Archaeometry 61:31–42. https://doi.org/10.1111/arcm.12410

    Article  Google Scholar 

  • Ionescu, C., Hoeck, V. (2020). Ceramic technology. How to investigate surface finishing. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01144-9

  • Jeffra CD (2011) The archaeological study of innovation: an experimental approach to the pottery wheel in Bronze Age Crete and Cyprus. Ph.D. thesis, University of Exeter

  • Jeffra CD (2013) A re-examination of early wheel potting in Crete. Annu Br Sch Athens 108:31–49. https://doi.org/10.1017/S0068245413000038

    Article  Google Scholar 

  • Kahl W-A, Ramminger B (2012) Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: a pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. J Archaeol Sci 39:2206–2219. https://doi.org/10.1016/j.jas.2012.02.029

    Article  Google Scholar 

  • Karasik A, Smilansky U (2008) 3D scanning technology as a standard archaeological tool for pottery analysis: practice and theory. J Archaeol Sci 35:1148–1168. https://doi.org/10.1016/j.jas.2007.08.008

    Article  Google Scholar 

  • Karl S, Jungblut D, Mara H, et al (2014) Insights into manufacturing techniques of archaeological pottery: industrial X-ray computed tomography as a tool in the examination of cultural material. In: Craft and science: international perspectives on archaeological ceramics. 10th European Meeting on Ancient Ceramics (EMAC ′09), London, 10.–13.09.2009. UCL Qatar Series in Archaeology and Cultural Heritage. pp 253–261

  • Knappett C (1999) Tradition and innovation in pottery forming technology: wheel-throwing at Middle Minoan Knossos. Annu Br Sch Athens 94:101–129

    Google Scholar 

  • Kozatsas J, Kotsakis K, Sagris D, David K (2018) Inside out: assessing pottery forming techniques with micro-CT scanning. An example from Middle Neolithic Thessaly. J Archaeol Sci 100:102–119. https://doi.org/10.1016/j.jas.2018.10.007

    Article  Google Scholar 

  • Krause RA (1985) The clay sleeps: an ethnoarchaeological study of three African potters. University of Alabama Press, Alabama

    Google Scholar 

  • Kudelić A (2020) Trace evidence of pottery forming techniques: early Urnfield culture vessels. In: Miloglav I (ed) Recent developments in archaeometry and archaeological methodology in South-Eastern Europe. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 58–81

    Google Scholar 

  • Kulkova M, Kulkov A (2016) The identification of organic temper in Neolithic pottery from Russia and Belarus. Old Potter’s Alm 21:2–12

    Google Scholar 

  • Lami MR, Opgenhaffen L, Kisjes I (2016) Pottery goes digital. 3D laser scanning technology and the study of archaeological ceramics. In: Campana S, Carpentiero G, Cirillo M (eds) CAA 2015. Keep the Revolution Going. Proceedings of the 43 rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology. University of Amsterdam, Amsterdam, pp 421–431

  • Laneri N (2009) Biografia di un vaso: tecniche di produzione del vasellame ceramico nel Vicino Oriente antico tra il V e il II millennio a.C. Pandemos, Paestum

  • Lee S-H, Zahouani H, Caterini R, Mathia TG (1998) Morphological characterisation of engineered surfaces by wavelet transform. Int J Mach Tools Manuf 38:581–589. https://doi.org/10.1016/S0890-6955(97)00105-3

    Article  Google Scholar 

  • Lemonnier P (1992) Elements for anthropology of technology. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Lemonnier P (1993) Technological choices: transformation in material cultures since the Neolithic. Routledge, London

    Google Scholar 

  • Levi ST (1999) Produzione e circolazione della ceramica nella sibaritide protostorica. I. Impasto e Dolii. All’Insegna del Giglio, Firenze

  • Linné S (1925) The technique of South American ceramics. Erlanders, Göteborg

    Google Scholar 

  • Livingstone Smith A (2007) Chaîne opératoire de la poterie: références ethnographiques, analyses et reconstitution. Musée royal de l’Afrique centrale, Tervuren

    Google Scholar 

  • López Varela SL, van Gijn A, Jacobs L (2002) De-mystifying pottery production in the Maya lowlands: detection of traces of use-wear on pottery sherds through microscopic analysis and experimental replication. J Archaeol Sci 29:1133–1147. https://doi.org/10.1006/jasc.2002.0760

    Article  Google Scholar 

  • Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Géotechnique 31:181–213. https://doi.org/10.1680/geot.1981.31.2.181

    Article  Google Scholar 

  • Machado AC, Freitas R, Calza CF, et al (2013) Characterization of ceramic archaeological by high resolution X ray microtomography. In: The benefits of nuclear technology for social inclusion. International Nuclear Atlantic Conference. Associação Brazilieira de Energia Nuclear, Recife

  • Majumdar A, Tien CL (1990) Fractal characterization and simulation of rough surfaces. Wear 136:313–327. https://doi.org/10.1016/0043-1648(90)90154-3

    Article  Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional statistics. J. Wiley, Chichester

    Google Scholar 

  • Maritan L (2020). Ceramic abandonment. How to recognise post-depositional transformations. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01141-y

  • Martineau R (2001) La fabrication des poteries du groupe de Clairvaux ancien (Jura, France), entre 3025 et 2980 avant J.-C. Expérimentations et analyses du façonnage et des traitements de surface, 2001. In: Bourguignon L, Ortega I, Frère-Sautot M-C (eds) Préhistoire et approche expérimentale. M. Mergoil, Montagnac (Hérault), pp 173–185

  • Martineau R (2002) Poterie, techniques et sociétés. Etudes analytiques et expérimentales à Chalain et Clairvaux (Jura), entre 3200 et 2900 av.J.-C. Bull Société Préhistorique Fr 99:150–153

    Google Scholar 

  • Martineau R (2003) Methodology for the archaeological and experimental study of pottery forming techniques. In: Serneels V, Maggetti M, Di Pierro S (eds) Ceramic in the society: proceedings of the 6th European meeting on ancient ceramics. University of Fribourg, Department of geosciences, mineralogy and petrography, Fribourg, pp 209–216

  • Martineau R (2005) Identification of the “beater and anvil” technique in Neolithic context: experimental approach. In: Livingstone Smith A, Bosquet D, Martineau R (eds) Pottery manufacturing processes: reconstruction and interpretation. Archaeopress, Oxford, pp 147–156

    Google Scholar 

  • May P, Tuckson M (2000) The traditional pottery of Papua New Guinea. Crawford House Publishing, Adelaide

    Google Scholar 

  • Méry S, Dupont-Delaleuf A, van der Leeuw SE (2012) Les techniques de façonnage céramique mettant en jeu la rotation à Hili (Émirats arabes unis) à la fin du IIIe millénaire (âge du Bronze ancien). Nouv L’Archéologie 119:52–64

    Google Scholar 

  • Middleton A (2005) Ceramics. In: Lang J, Middleton A (eds) Radiography of cultural material. Elsevier, Oxford, pp 76–95

    Google Scholar 

  • Monna F, Esin Y, Magail J, Granjon L, Navarro N, Wilczek J, Saligny L, Couette S, Dumontet A, Chateau C (2018) Documenting carved stones by 3D modelling—example of Mongolian deer stones. J Cult Herit 34:116–128. https://doi.org/10.1016/j.culher.2018.04.021

    Article  Google Scholar 

  • Montana, G. (2020). Ceramic raw materials. How to recognize them and locate the supply basins. Mineralogy, petrography. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01130-1

  • Montani I, Sapin E, Sylvestre R, Marquis R (2012) Analysis of Roman pottery graffiti by high resolution capture and 3D laser profilometry. J Archaeol Sci 39:3349–3353

    Google Scholar 

  • Moosleitner F (1974) Eine Unterlagsplatte für eine Töpferscheibe vom Dürrnberg bei Hallein, Land Salzburg. Archaeol Austriaca 56:13–20

    Google Scholar 

  • Morphet B (2009) CircSpatial: functions for circular spatial data. Version R package version 1.0-1. https://cran.r-project.org/src/contrib/Archive/CircSpatial/. Accessed 7 May 2020

  • Nenk B, Walker K (1991) An aquamanile and a spouted jug in Lyveden-Stanion Ware. Mediev Ceram 15:25–28

    Google Scholar 

  • Neumannová K, Petřík J, Vostrovská I et al (2017) Variability in coiling technique in LBK pottery inferred by experiments and pore structure micro-tomography analysis. Archeol Rozhl 69:172–186

    Google Scholar 

  • Nicklin K (1971) Stability and innovation in pottery manufacture. World Archaeol 3:16–48

    Google Scholar 

  • O’Connor J, Sexton B, Smart RSC (eds) (2003) Surface analysis methods in materials science, 2nd edn. Berlin Heidelberg, Springer-Verlag

    Google Scholar 

  • Orton C, Tyers P, Vince AG (1993) Pottery in archaeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Papageorgiou, I. (2020). Ceramic investigation. How to perform statistical analyses. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01142-x

  • Philpotts AR, Wilson N (1994) Application of petrofabric and phase equilibria analysis to the study of a potsherd. J Archaeol Sci 21:607–618. https://doi.org/10.1006/jasc.1994.1060

    Article  Google Scholar 

  • Pierce C (2005) The development of corrugated pottery in Southwestern Colorado. KIVA 71:79–100. https://doi.org/10.1179/kiv.2005.71.1.004

    Article  Google Scholar 

  • Pierret A (1994) Identification des techniques de façonnage: interêt des données expérimentales pour l’analyses des microstructures. In: Audouze F, Binder D (eds) Terre cuite et société. La céramique, document technique, économique, culturel. APDCA, Juan-les-Pins, pp 75–91

  • Pierret A (1995) Analyse technologique des céramiques archéologiques : développements méthodologiques pour l’identification des techniques de façonnage. Un exemple d’application: le matériel du village des Arènes à Levroux (Indre). Ph.D. thesis, Université Paris 1 - Panthéon Sorbonne

  • Pierret A, Moran CJ (1996) Quantification of orientation of pore patterns in X-ray images of deformed clay. Microsc Microanal Microstruct 7:421–431. https://doi.org/10.1051/mmm:1996141

    Article  Google Scholar 

  • Podsiadlo P, Stachowiak GW (2002) Hybrid fractal-wavelet method for characterization of tribological surfaces–a preliminary study. Tribol Lett 13:241–250. https://doi.org/10.1023/A:1021059108478

    Article  Google Scholar 

  • Pradell T, Molera J (2020). Ceramic technology. How to characterise ceramic glazes. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01136-9

  • Quinn PS (2013) Ceramic petrography: the interpretation of archaeological pottery & related artefacts in thin section. Archaeopress, Oxford

    Google Scholar 

  • Reed ES, Bril B (1996) The primacy of action in development. In: Latash ML, Turvey MT (eds) Dexterity and its development. L. Erlbaum Associates, Hillsdale, pp 431–451

    Google Scholar 

  • Reedy CL (2008) Thin section petrography of stone and ceramic cultural materials. Archetyp Publications, London

    Google Scholar 

  • Reina RE, Hill RM (1978) The traditional pottery of Guatemala. University of Texas Press, Austin

    Google Scholar 

  • Rice PM (2015) Pottery analysis: a sourcebook, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Ross J, Fowler KD, Shai I, Greenfield HJ, Maeir AM (2018) A scanning method for the identification of pottery forming techniques at the mesoscopic scale: a pilot study in the manufacture of Early Bronze Age III holemouth jars and platters from Tell es-Safi/Gath. J Archaeol Sci Rep 18:551–561. https://doi.org/10.1016/j.jasrep.2018.01.036

    Article  Google Scholar 

  • Rosselló JG, Trias MC (2013) Making pots: el modelado de la cerámica a mano y su potencial interpretativo. Archaeopress, Oxford

    Google Scholar 

  • Roux V (1994) La technique du tournage: définition et reconnaissance par les macrotraces. In: Audouze F, Binder D (eds) Terre cuite et société. La céramique, document technique, économique, culturel. APDCA, Juan-les-Pins, pp 45–58

  • Roux V (2003) A dynamic systems framework for studying technological change: application to the emergence of the potter’s wheel in the southern Levant. J Archaeol Method Theory 10:1–30. https://doi.org/10.1023/A:1022869912427

    Article  Google Scholar 

  • Roux V (2017) Ceramic manufacture: the chaîne opératoire approach. In: Hunt AMW (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, pp 101–114

    Google Scholar 

  • Roux V (2019) Ceramics and society: a technological approach to archaeological assemblages. Springer, Cham

    Google Scholar 

  • Roux V, Corbetta D (1989) The potter’s wheel: craft specialization and technical competence. Oxford & IBH Publishing, New Delhi

    Google Scholar 

  • Roux V, Courty MA (1998) Identification of wheel-fashioning methods: technological analysis of 4th-3rd millennium oriental ceramics. J Archaeol Sci 25:747–763. https://doi.org/10.1006/jasc.1997.0219

    Article  Google Scholar 

  • Rückl Š, Jacobs L (2016) “With a little help from my wheel”: wheel-coiled pottery in Protogeometric Greece. Hesperia J Am Sch Class Stud Athens 85:297–321. https://doi.org/10.2972/hesperia.85.2.0297

    Article  Google Scholar 

  • Rye OS (1977) Pottery manufacturing techniques: X-ray studies. Archaeometry 19:205–211. https://doi.org/10.1111/j.1475-4754.1977.tb00200.x

    Article  Google Scholar 

  • Rye OS (1981) Pottery technology: principles and reconstruction. Taraxacum, Washington

    Google Scholar 

  • Rye OS, Evans C (1976) Traditional pottery techniques of Pakistan: field and laboratory studies. Smithsonian Institution Press, Washington

    Google Scholar 

  • Sahoo P (2011) 1–Surface topography. In: Davim JP (ed) Tribology for engineers. Woodhead Publishing, pp 1–32

  • Sanger M, Thostenson J, Hill M, Cain H (2013) Fibrous twists and turns: early ceramic technology revealed through computed tomography. Appl Phys A Mater Sci Process 111:829–839. https://doi.org/10.1007/s00339-012-7287-6

    Article  Google Scholar 

  • Sanger MC (2016) Investigating pottery vessel manufacturing techniques using radiographic imaging and computed tomography: studies from the Late Archaic American Southeast. J Archaeol Sci Rep 9:586–598. https://doi.org/10.1016/j.jasrep.2016.08.005

    Article  Google Scholar 

  • Santacreu DA (2014) Materiality, techniques and society in pottery production the technological study of archaeological ceramics through paste analysis. De Gruyter Open, Warsaw [u.a]

  • Sciau, Ph, Sanchez, C., Gliozzo, E. (2020). Ceramic technology. How to characterise terra sigillata ware. Archaeol Anthropol Sci [this topical collection]. https://doi.org/10.1007/s12520-020-01137-8

  • Schiffer MB, Skibo JM (1987) Theory and experiment in the study of technological change. Curr Anthropol 28:595–622. https://doi.org/10.1086/203601

    Article  Google Scholar 

  • Shepard AO (1956) Ceramics for the archaeologist. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Sinopoli CM (1991) Approaches to archaeological ceramics. Plenum Press, New York

    Google Scholar 

  • Stevenson RBK (1953) Prehistoric pot-building in Europe. Man 53:65–68

    Google Scholar 

  • Thér R (2016) Identification of pottery-forming techniques using quantitative analysis of the orientation of inclusions and voids in thin sections. Archaeometry 58:222–238. https://doi.org/10.1111/arcm.12166

    Article  Google Scholar 

  • Thér R, Květina P, Neumannová K (2019) Coiling or slab building: potential of orientation analysis for identification of forming techniques used by Early Neolithic potters. J Archaeol Sci Rep 26:1–14. https://doi.org/10.1016/j.jasrep.2019.101877

    Article  Google Scholar 

  • Thér R, Mangel T, Gregor M (2017) Potter’s wheel in the Iron Age in Central Europe: process or product innovation? J Archaeol Method Theory 24:1–44. https://doi.org/10.1007/s10816-016-9312-0

    Article  Google Scholar 

  • Thér R, Toms P (2016) Quantification of the orientation and alignment of aplastic components of a ceramic body as a method for distinguishing among various means of using a rotational device in pottery forming. J Archaeol Sci Rep 9:33–43. https://doi.org/10.1016/j.jasrep.2016.06.048

    Article  Google Scholar 

  • Todaro S (2017) Forming techniques and cultural identity in Early and Middle Minoan Crete: multi-layered vessels from a pottery production area at Phaistos. SAIA Annu Della Scuola Archeol Atene E Delle Missioni Ital Oriente 95:127–141

    Google Scholar 

  • van der Leeuw SE (1976) Studies in the technology of ancient pottery. Universiteit van Amsterdam, Amsterdam

    Google Scholar 

  • van der Leeuw SE (1993) Giving the potter a choice: conceptual aspects of pottery techniques. In: Technological choices: transformation in material cultures since the Neolithic. Routledge, London and New York, pp 238–288

    Google Scholar 

  • van Doosselaere B (2010) Poterie et histoire au temps des grands empires ouest africains études technologiques de l’assemblage céramique de Koumbi Saleh (Mauritanie 6e - 17e siècles). Ph.D. thesis, Université Paris 1 - Panthéon Sorbonne

  • Vandiver PB (1987) Sequential slab construction; a conservative southwest Asiatic ceramic tradition, ca. 7000–3000 B.C. Paléorient 13:9–35. https://doi.org/10.3406/paleo.1987.4426

    Article  Google Scholar 

  • Vandiver PB, Ellington WA, Robinson TK et al (1991) New applications of X-radiographic imaging technologies for archaeological ceramics. Archeomaterials 5:185–207

    Google Scholar 

  • Vandiver PB, Tumosa CS (1995) Xeroradiographic imaging. Am J Archaeol 99:121–124. https://doi.org/10.2307/506880

    Article  Google Scholar 

  • Velde B, Druc IC (1999) Archaeological ceramic materials: origin and utilization. Springer, Berlin

    Google Scholar 

  • Vyalov SS (1986) Rheological fundamentals of soil mechanics. Elsevier, Amsterdam

    Google Scholar 

  • Whitbread IK (1989) A proposal for the systematic description of thin sections towards the study of ancient ceramic technology. In: Maniatis Y (ed) Archaeometry: proceedings of the 25th international symposium. Elsevier, Amsterdam, pp 127–138

    Google Scholar 

  • Whitbread IK (1996) Detection and interpretation of preferred orientation in ceramic thin sections. In: Higgins T, Main P, Lang J (eds) Imaging the past: electronic imaging and computer graphics in museums and archaeology. British Museum, London, pp 173–181

    Google Scholar 

  • Whitbread IK (2017) Description of archaeological ceramics. In: Hunt AMW (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, pp 200–216

    Google Scholar 

  • Whitehouse DJ (2002) Surfaces and their measurement. Hermes Penton Ltd, London

    Google Scholar 

  • Wilczek J (2017) Morphometrics of (especially ceramic) Celtic artefacts – new methods of acquisition, systematization and valorization of the past. In: Wilczek J, Cannot A, Le Cozanet T, Remy J (eds) Interdisciplinarité et nouvelles approches dans les recherches Sur l’âge du Fer. Interdisciplinarity and new approaches in the research of the Iron Age. International Doctoral Conference 2015. Bibracte (France), 2015. Masarykova univerzita, Brno, pp 73–76

  • Wilczek J, Monna F, Barral P, Burlet L, Chateau C, Navarro N (2014) Morphometrics of Second Iron Age ceramics—strengths, weaknesses, and comparison with traditional typology. J Archaeol Sci 50:39–50. https://doi.org/10.1016/j.jas.2014.05.033

    Article  Google Scholar 

  • Wilczek J, Monna F, Jébrane A et al (2018) Computer-assisted orientation and drawing of archaeological pottery. J Comput Cult Herit 11:22:1–22:17. https://doi.org/10.1145/3230672

    Article  Google Scholar 

  • Wirska-Parachoniak M (1980) Produkcja ceramiczna Celtów na terenach Polski poludniowej. Mater Archeol Nowej Huty 6:29–158

    Google Scholar 

  • Woods AJ (1985) An introductory note on the use of tangential thin sections for distinguishing between wheel-thrown and coil/ring-built vessels. Bull Exp Firing Group 3:100–114

    Google Scholar 

  • Zakšek K, Oštir K, Kokalj Ž (2011) Sky-view factor as a relief visualization technique. Remote Sens 3:398–415. https://doi.org/10.3390/rs3020398

    Article  Google Scholar 

  • Zeiler M (2009) Rekonstruktion von Töpferein der jüngeren vorrömischen Eisenzeit (Ha D – Lt D). In: Trebsche P, Balzer I, Eggl C et al (eds) Architektur: Interpretation und Rekonstruktion: Beiträge zur Sitzung der AG Eisenzeit während des 6, Deutschen Archäologie-Kongresses in Mannheim, vol 2008. Beier & Beran, Langenweissbach, pp 263–280

    Google Scholar 

  • Zhou G, Leu M, Blackmore D (1995) Fractal geometry modeling with applications in surface characterisation and wear prediction. Int J Mach Tools Manuf 35:203–209. https://doi.org/10.1016/0890-6955(94)P2374-O

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was completely supported from the project “Technological changes in pottery manufacture in the context of social transformations during the La Tène period in Bohemia” (project 19-21146S), financed by the Czech Science Foundation. I would like to thank Madeleine Štulíková and Steve Ridgill for their assistance in correcting the English grammar and the reviewers for their inspiring comments, which helped to improve the manuscript.

Code availability

Not applicable.

Funding

Project No. 19-21146S “Technological changes in pottery manufacture in the context of social transformations during the La Tène period in Bohemia” financed by the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Richard Thér.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a Topical Collection on Ceramics: Research questions and answers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thér, R. Ceramic technology. How to reconstruct and describe pottery-forming practices. Archaeol Anthropol Sci 12, 172 (2020). https://doi.org/10.1007/s12520-020-01131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01131-0

Keywords

Navigation