Skip to main content

3D Metrology for Ancient Pottery Classification and Reconstruction

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

Ceramics classification and reconstruction are fundamental for the knowledge of history, economy, and art of a site. The method traditionally used by archeologists for their investigation presents a series of significant limitations. The results depend on subjectivity, specialization, personal skills, and professional experience of the operator; hence, they are not reproducible and repeatable. Furthermore, since the method is time-consuming, it is used to analyze only indicative samples that have characteristic components.

In order to overcome these limitations, in the last years, some automatic methods for studying ancient pottery’s findings are proposed in literature. All the most promising ones analyze a 3D discrete geometric model of ceramics. By analyzing the voluminous related literature, the hottest topics are 3D geometric model setup, virtual prototyping, geometric model fragment processing, geometric model processing of whole-shape pottery, 3D puzzling of archeological fragments, classification, and additive manufacturing technologies for physical reconstruction of ceramics.

In order to help all the researchers involved in this field, this chapter aims to provide a comprehensive and critical analysis of the state of the art for the abovementioned topics. For this purpose, the present review is focused on the presentation of the pros and cons of the techniques used on these different issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Pieraccini M, Guidi G, Atzeni C (2001) 3D digitizing of cultural heritage. J Cult Herit 2(1):63–70

    Article  Google Scholar 

  2. Segreto T, Bottillo A, Teti R, Galantucci LM, Lavecchia F, Galantucci MB (2017) Non-contact reverse engineering modeling for additive manufacturing of down scaled cultural artefacts. Procedia CIRP 62:481–486

    Article  Google Scholar 

  3. Cheng H-M, Yen Y-N, Yang W-B (2009) Digital archiving in cultural heritage preservation. In: Proceedings of the 14th conference on computer-aided architectural design research in Asia, CAADRIA2009, Yunlin, Taiwan, pp 93–101

    Google Scholar 

  4. Hassani F (2015) Documentation of cultural heritage techniques, potentials and constraints. Int Arch Photogramm Remote Sens Spat Inf Sci 40(5W7):207–214

    Google Scholar 

  5. Levoy M et al (2000) The digital Michelangelo Project. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp 131–144

    Google Scholar 

  6. Weigert A, Dhanda A, Cano J, Bayod C, Fai S, Santana Quintero M (2019) A review of recording technologies for digital fabrication in heritage conservation. Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-2(W9):773–778. https://doi.org/10.5194/isprs-archives-XLII-2-W9-773-2019

    Article  Google Scholar 

  7. Di Angelo L, Di Stefano P, Fratocchi L, Marzola A (2018) An AHP-based method for choosing the best 3D scanner for cultural heritage applications. J Cult Herit 34:109–115

    Article  Google Scholar 

  8. Nurunnabi A, West G, Belton D (2015) Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data. Pattern Recogn 48(4):1404–1419

    Article  Google Scholar 

  9. Barnett V, Lewis T (1995) Outlier in statistical data. Wiley, New York

    Google Scholar 

  10. Rousseeuw PJ, Leroy A (2003) Robust regression and outlier detection. Wiley, NewYork

    Google Scholar 

  11. Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th international conference on very large databases (VLDB), NewYork, USA, pp 392–403

    Google Scholar 

  12. Jiang SY, An QB (2008) Clustering-based outlier detection method. In: 2008 IEEE Fifth international conference on Fuzzy Systems and Knowledge Discovery 2:429–433

    Google Scholar 

  13. Liu B, Xiao Y, Cao L, Hao Z, Deng F (2013) SVDD-based outlier detection on uncertain data. Knowl Inf Syst 34(3):597–618

    Article  Google Scholar 

  14. Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126

    Article  Google Scholar 

  15. Han XF, Jin JS, Wang MJ, Jiang W, Gao L, Xiao L (2017) A review of algorithms for filtering the 3D point cloud. Signal Process Image Commun 57:103–112

    Article  Google Scholar 

  16. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  17. Di Angelo L, Di Stefano P, Pane C (2018) An automatic method for pottery fragments analysis. Measurement 128:138–148

    Article  Google Scholar 

  18. Gomes L, Bellon ORP, Silva L (2014) 3D reconstruction methods for digital preservation of cultural heritage: a survey. Pattern Recogn Lett 50:3–14

    Article  Google Scholar 

  19. Di Angelo L, Di Stefano P, Morabito AE (2018) C Pane: measurement of constant radius geometric features in archaeological pottery. Measurement 124:138–146

    Article  Google Scholar 

  20. Carr J, Beatson R, Cherrie H, Mitchel T, Fright W, Mccallum B, Evans T (2001) Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques (SIGGRAPH), pp 67–76

    Google Scholar 

  21. Turk G, O’Brien J (2002) Modelling with implicit surfaces that interpolate. ACM Trans Graph 21(4):855–873. https://doi.org/10.1145/571647.571650

    Article  Google Scholar 

  22. Dey TK, Sun J (2005) An adaptive MLS surface for reconstruction with guarantees. In: Proceedings of the third Eurographics symposium on Geometry processing, July 04–06 Vienna, Austria

    Google Scholar 

  23. Kolluri R (2008) Provably good moving least squares. ACM Trans Algorithms 4(2):1–25. https://doi.org/10.1145/1361192.1361195

    Article  Google Scholar 

  24. Yang Z, Seo YH, Kima TW (2010) Adaptive triangular-mesh reconstruction by mean-curvature based refinement from point clouds using a moving parabolic approximation. Comput Aided Des 42(1):2–17. https://doi.org/10.1016/j.cad.2009.04.014

    Article  Google Scholar 

  25. Amenta N, Choi S, Dey TK, Leekha N (2007) A simple algorithm for homoeomorphic surface reconstruction. Int J Comput Geometry Appl 12(1 & 2):125–141

    Google Scholar 

  26. Dey TK, Giesen J, Hudson J. Delaunay based shape reconstruction from large data. In: Proceeding of the IEEE symposium on parallel and large-data visualization and graphics 19–27 (2001). https://doi.org/10.1109/PVGS.2001.964399

  27. Cohen-Steiner D, Da F (2004) A greedy Delaunay-based surface reconstruction algorithm. Vis Comput 20(1):4–16. https://doi.org/10.1007/s00371-003-0217-z

    Article  Google Scholar 

  28. Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G (1999) The ball-pivoting algorithm for surface reconstruction. IEEE Trans Vis Comput Graph 5(4):349–359. https://doi.org/10.1109/2945.817351

    Article  Google Scholar 

  29. Huang J, Menq CH (2002) Combinatorial manifold mesh reconstruction and optimization from unorganized points with arbitrary topology. Comput Aided Des 34(2):149–165

    Article  Google Scholar 

  30. Li X, Han CY, Wee WG (2009) On surface reconstruction: a priority driven approach. Comput Aided Des 41(9):626–640

    Article  Google Scholar 

  31. Di Angelo L, Di Stefano P, Giaccari L (2011) A new mesh-growing algorithm for fast surface reconstruction. Comput Aided Des 43(6):639–650

    Article  Google Scholar 

  32. Di Angelo L, Di Stefano P, Giaccari L (2013) A fast mesh-growing algorithm for manifold surface reconstruction. Comput Aided Des Appl 10(2):197–220

    Article  Google Scholar 

  33. Pottmann H, Peternell M, Ravani B (1999) An introduction to line geometry with applications. Comput Aided Des 31:3–16

    Article  Google Scholar 

  34. Cao Y, Mumford D (2002) Geometric structure estimation of axially symmetric pots from small fragments. Signal processing, pattern recognition, and applications, IASTED international conference

    Google Scholar 

  35. Di Angelo L, Di Stefano P, Morabito AE (2015) A robust method for axis identification. Precision Eng 39:194–203

    Article  Google Scholar 

  36. Mara H, Sablatnig R (2006) Orientation of fragments of rotationally symmetrical 3d-shapes for archaeological documentation. In: Third international symposium on 3D data processing, visualization, and transmission, IEEE, pp 1064–1071

    Google Scholar 

  37. Halir R (1999) An automatic estimation of the axis of rotation of fragments of archaeological pottery: a multi-step model-based approach. In: Proceedings of the 7th international conference in Central Europe on computer graphics, visualization and interactive digital media (WSCG99)

    Google Scholar 

  38. Han D, Hahn HS (2014) Axis estimation and grouping of rotationally symmetric object segments. Pattern Recogn 47:296–312

    Article  Google Scholar 

  39. Son K, Almeida EB, Cooper DB (2013) Axially symmetric 3D pots configuration system using axis of symmetry and break curve. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 257–264

    Google Scholar 

  40. Di Angelo L, Di Stefano P (2018) Axis estimation of thin-walled axially symmetric solids. Pattern Recogn Lett 106:47–52

    Article  Google Scholar 

  41. Di Angelo L, Di Stefano P, Morabito AE (2014) Comparison of methods for axis detection of high-density acquired axially-symmetric surfaces. Int J Interact Des Manuf 8(3):199–200

    Article  Google Scholar 

  42. Willis A, Orriols X, Cooper DB (2003) Accurately estimating Sherd 3D Surface Geometry with Application to Pot Reconstruction. Accurately Estimating Sherd 3D Surface Geometry with Application to Pot Reconstruction IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 1, art. no. 4624519

    Google Scholar 

  43. Hlavackova-Schindler K, Kampel M, Sablatnig R (2001) Fitting of a closed planar curve representing a profile of an archaeological fragment. In: Proceedings VAST 2001 virtual reality, archeology, and cultural heritage, pp 263–269

    Google Scholar 

  44. Kampel M, Mara H, Sablatnig R (2005) Robust 3D Reconstruction of Archaeological Pottery Base on Concentric regular Rills. In: Proceedings of the 6th international workshop on image analysis for multimedia interactive services, Montreau, Switzerland, April 13–15 2005, pp 14–20

    Google Scholar 

  45. Karasik A, Smilansky U (2008) 3D scanning technology as a standard tool for pottery analysis: practice and theory. J Archaeol Sci 35:1148–1168

    Article  Google Scholar 

  46. Cohen F, Liu Z, Ezgi T (2013) Virtual reconstruction of archaeological vessels using expert priors and intrinsic differential geometry information. Comput Graph 37:41–53

    Article  Google Scholar 

  47. Gilboa A, Tal A, Shimshini L, Kolomenkin M (2013) Computer-based, automatic recording and illustration of complex archaeological artifacts. J Archaeol Sci 1329–1339

    Google Scholar 

  48. Di Angelo L, Di Stefano P, Pane C (2017) Automatic dimensional characterization of pottery. J Cult Herit 26:118–128

    Article  Google Scholar 

  49. Di Angelo L, Di Stefano P, Morabito AE (2018) Secondary features segmentation from high-density tessellated surfaces. Int J Interact Des Manuf 12(3):801–809

    Article  Google Scholar 

  50. Solbrig T, Brunner D, Brunnett G (2006) Finding ornamentations on Bronze Age vessels to support the automated classification, EVA 2006 Berlin Conference Proceedings, pp 72–78

    Google Scholar 

  51. Karasik A, Smilansky U (2006) Computation of the capacity of pottery vessels based on drawn profiles. In: Mazar A (ed) Excavations at Tel Beth Shean 1989–1996, vol I. Appendix 1A to Chapter 12. (Jerusalem)

    Google Scholar 

  52. Senior LM, Birnie DP III (1995) Accurately estimating vessel volume from profile illustrations. Am Antiq 60(2):319–334

    Article  Google Scholar 

  53. Pavić D, Kobbelt L (2008) High-resolution volumetric computation of offset surfaces with feature preservation. Comput Graphics Forum 27(2):165–174. Blackwell Publishing Ltd., Oxford, UK

    Google Scholar 

  54. Liu S, Wang CC (2010) Fast intersection-free offset surface generation from freeform models with triangular meshes. IEEE Trans Autom Sci Eng 8(2):347–360

    Article  Google Scholar 

  55. Spelitz S (2017) Inner surface reconstruction of 3D scanned vessels. In: 3rd IMEKO international conference on metrology for archaeology and cultural heritage, IMEKO, pp 75–80

    Google Scholar 

  56. Soler F, Melero FJ, Luzón MV (2017) A complete 3D information system for cultural heritage documentation. J Cult Herit 23:49–57

    Article  Google Scholar 

  57. Anichini F, Fabiani F, Gattiglia G, Gualandi ML (2012) A database for archaeological data recording and analysis. MapPapers 1en-II 21–38

    Google Scholar 

  58. Classical Art Research Centre. Beazley Archive Pottery Database (BAPD). http://www.beazley.ox.ac.uk/pottery/default.htm

  59. Verga F, Fabbri F (2011) Un approccio globale, archeologico, archeometrico, informatico, alla schedatura della ceramica a vernice nera della Valle del Tevere. Archeologia e Calcolatori 22:51–65

    Google Scholar 

  60. Smith NG, Karasik A, Narayanan T, Olson ES, Smilansky U, Levy TE (2014) The pottery informatics query database: a new method for mathematic and quantitative analyses of large regional ceramic datasets. J Archaeol Method Theory 21(1):212–250

    Article  Google Scholar 

  61. Wilczek J, Monna F, Jébrane A, Chazal CL, Navarro N, Couette S, Smith CC (2018) Computer-assisted orientation and drawing of archaeological pottery. J Comput Cult Herit (JOCCH) 11(4):22

    Google Scholar 

  62. Willis AR, Cooper DB (2008) Computational reconstruction of ancient artefacts: from ruins to relics (2008). IEEE Signal Process Mag 25(4):65–83

    Article  Google Scholar 

  63. Grosman L, Smikt O, Smilansky U (2008) On the application of 3-D scanning technology for the documentation and typology of lithic artifacts. J Archaeol Sci 35(12):3101–3110

    Article  Google Scholar 

  64. Biasotti S, Moscoso Thompson E, Spagnuolo M (2018) Experimental similarity assessment for a collection of fragmented artifacts, Eurographics workshop on 3D object retrieval, EG 3DOR 103–110

    Google Scholar 

  65. Marie I, Qasrawi H (2005) Virtual assembly of pottery using Moire surface profile measurements. J Archaeol Sci 32(10):1527–1633

    Article  Google Scholar 

  66. Lu Y, Gardner H, Jin H, Liu N, Hawkins R, Farrington I. Interactive reconstruction of archaeological fragments in a collaborative environment. In: Proceedings 9th biennial conference Australian pattern recognition society on digital image (DICTA 2007), IEEE, pp 23–29

    Google Scholar 

  67. Liu J, Zhou M, Geng G, Xiamixiding R (2017) Broken pottery relic reassembling based on mixed feature vector. Boletin Tecnico/Tech Bull 55(5):1–9

    Google Scholar 

  68. Kampel M, Sablatnig R. 3D Puzzling of Archaeological Fragments. In: Proceedings of the 9th computer vision Winter Workshop, Piran, Slovenia, 4–6 February 2004, pp 31–40

    Google Scholar 

  69. Zheng SY, Huang RY, Wang Z, Li J (2014) Reassembling 3d thin fragments of unknown geometry, cultural heritage. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci 2(5):393–399

    Google Scholar 

  70. Willis AR, Cooper DB (2004) Bayesian assembly of 3d axially symmetric shapes from fragments. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 82–89

    Google Scholar 

  71. Garcia Castaeda A, Brown B, Rusinkiewicz S, Funkhouser T, Weyrich T (2011) Global consistency in the automatic assembly of fragmented artefacts. In: Proceedings of the 12th international symposium on virtual reality, archaeology and cultural heritage VAST, Prato, Italy

    Google Scholar 

  72. Orton C, Hughes M, Hughes M (2013) Pottery in archaeology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  73. Fish PR (1978) Consistency in archaeological measurement and classification: a pilot study. Am Antiq 43(1):86–89

    Article  Google Scholar 

  74. Martinez Carrillo AL (2008) Computer Application in archaeological pottery: a review and new perspective, on the road to reconstructing the past. In: Proceeding of the 36th computer application and quantitative method in archaeology conference, Budapest, 2–6 April 2008, pp 397–401

    Google Scholar 

  75. Karasik A, Smilansky U (2011) Computerized morphological classification of ceramics. J Archaeol Sci 38(10):2644–2657

    Article  Google Scholar 

  76. Sablatnig R, Menard C (1999) On estimating the position of fragments on rotational symmetric pottery, 3-D Digital Imaging and Modeling. In: Proceedings second international conference, IEEE, pp 455–462

    Google Scholar 

  77. Kampel M, Sablatnig R (2007) Rule based system for archaeological pottery classification. Pattern Recogn Lett 28:740–747

    Article  Google Scholar 

  78. Porter D, Werner P, Utcke S (2005) Ancient ceramics: computer aided classification. Technical report M-338. University of Hamburg, Computer Science Department, KOGS

    Google Scholar 

  79. Gilboa A, Karasik A, Sharon I, Smilansky U (2004) Towards computerized typology and classification of ceramics. J Archaeol Sci 31:681–694

    Article  Google Scholar 

  80. Adan-Bayewitz D, Karasik A, Smilansky U, Asaro F, Giauque RD, Lavidor R (2009) Differentiation of ceramic chemical element composition and vessel morphology at a pottery production centre in roman galilee. J Archaeol Sci 36:2517–2530

    Article  Google Scholar 

  81. Koutsoudis A, Pavlidis G, Liami V, Tsiafakis D, Chamzas C (2010) 3d pottery content-based retrieval based on pose normalisation and segmentation. J Cult Herit 11:329–338

    Article  Google Scholar 

  82. Hörr C, Brunner D, Brunnett G (2007) Feature extraction on axially symmetric pottery for hierarchical classification. ComputAided Des Appl 4:375–384

    Google Scholar 

  83. Roman-Rangel E, Jimenez-Badillo D, Marchand-Maillet S (2016) Classification and retrieval of archaeological potsherds using histograms of spherical orientations. J Comput Cult Herit (JOCCH) 9(3):17

    Google Scholar 

  84. Lucena M et al (2017) Classification of archaeological pottery profiles using modal analysis. Multimed Tools Appl 76(20):21565–21577

    Article  Google Scholar 

  85. Karasik A, Smilansky U (2008) 3d scanning technology as a standard archaeological tool for pottery analysis: practice and theory. J Archaeol Sci 35:1148–1168

    Article  Google Scholar 

  86. Maiza C, Gaildrat V (2005) Automatic classification of archaeological potsherds. In: The eight international conference on computer graphics and artificial intelligence, pp 11–12

    Google Scholar 

  87. Martínez-Carrillo AL, Ruiz-Rodríguez A, Lucena M, Fuertes JM (2009) A proposal of ceramic typology based on the image comparison of the profile. Comput Appl Archaeol 1e7

    Google Scholar 

  88. Zvietcovich F, Navarro L, Saldana J, Castillo LJ, Castaneda B (2016) A novel method for estimating the complete 3D shape of pottery with axial symmetry from single potsherds based on principal component analysis. Digital Appl Archaeol Cult Herit 3(2):42–54

    Google Scholar 

  89. Scopigno R, Cignoni P, Pietroni N, Callieri M, Dellepiane M (2017) Digital fabrication techniques for cultural heritage: a survey. Comput Graphics Forum 36(1):6–21

    Article  Google Scholar 

  90. Echavarria KR, Samaroudi M (2018) Digital workflow for creating 3D puzzles to engage audiences in the interpretation of archaeological artefacts. In 16th EUROGRAPHICS Workshop on Graphics and Cultural Heritage (Workshop on Graphics and Cultural Heritage), Vienna, 12–15 November, Eurographics Association: 77–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Di Angelo, L., Di Stefano, P., Morabito, A.E., Pane, C. (2022). 3D Metrology for Ancient Pottery Classification and Reconstruction. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_53

Download citation

Publish with us

Policies and ethics