Skip to main content

Advertisement

Log in

In search of use patterns of archaeological features on multi-cultural sites. A microarchaeological case study of ditch infill formation at an Eneolithic enclosure in Mikulin (Eastern Poland)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

By studying the microscopic record of infills of archaeological features, it is possible to reveal their formation history and consequently obtain a better understanding of natural and cultural factors which have operated at the sites, following the assumption that specific past land use practices leave specific microarchaeological imprints. At multi-phase sites with a diverse history of occupation, this may help to detect possible changes in the use of the features and link them with known occupation episodes. From the viewpoint of studies on the role of enclosures in the prehistoric cultural landscape, it is important to have an understanding of how their distinctive structures—the ditches—were used. In order to gain insight into this matter, the infill of one of the ditches of an Eneolithic enclosure discovered at the site of Mikulin 8 (Eastern Poland) was studied from a geoarchaeological perspective involving soil micromorphology and physico-chemical analyses. As a result, it was possible to identify three major processes responsible for the formation of the infill and estimate their rates, what significantly broadened the knowledge of the context in which artefacts were discovered and brought some information on natural landscape changes. These findings, combined with data delivered by artefacts analysis, geophysical prospection, and radiocarbon dating, suggest the existence of two distinct settlement episodes at the site, marked by different use of the ditch structure, first by communities of the Lublin-Volhynian culture and then by peoples of the Funnel Beaker culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. www.earthslides.com

References

  • Bell M, Fowler PJ, Hillson S (1996) The Experimental Earthwork Project, 1960–1992. Council for British Archaeology, York

    Google Scholar 

  • Bertran P, Texier J-P (1999) Facies and microfacies of slope deposits. Catena 35:99–121

    Article  Google Scholar 

  • Bockheim JG, Hartemnik AE (2013) Classification and distribution of soils with lamellae in the USA. Geoderma 206:92–100

    Article  Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  • Bullock P, Fedoroff N, Jongerius A et al (1985) Handbook for soil thin section description. Waine Research Publications, Wolverhampton

    Google Scholar 

  • Canti MG (2003) Earthworm activity and archaeological stratigraphy: a review of products and processes. J Archaeol Sci 30:135–148

    Article  Google Scholar 

  • Canti MG, Huisman DJ (2015) Scientific advances in geoarchaeology during the last twenty years. J Archaeol Sci 56:96–108

    Article  Google Scholar 

  • Chmielewski TJ, Furmanek M, Mackiewicz M et al (2015) Landscape with enclosures. Geomagnetic prospection and surface survey of the Dobużek Scarp microregion, Eastern Poland. Archaeol Pol 54:197–201

    Google Scholar 

  • Courty MA, Goldberg P, Macphail RI (1989) Soils and micromorphology in archaeology. Cambridge University Press, New York, New Rochelle, Melbourne, Sydney

    Google Scholar 

  • Crowther J (1997) Soil phosphate surveys: critical approaches to sampling, analysis and interpretation. Archaeol Prospect 4:93–102

    Article  Google Scholar 

  • David N, Kramer C (2001) Ethnoarchaeology in action. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Deák J, Gebhardt A, Lewis H et al (2017) Soils disturbed by vegetation clearance and tillage. In: Nicosia C, Stoops G (eds) Archaeological soil and sediment micromorphology. Wiley Blackwell, Hoboken, pp 233–264

    Google Scholar 

  • Durand N, Monger C, Canti MG (2010) Calcium carbonate features. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 149–194

    Chapter  Google Scholar 

  • Furmanek M, Krupski M, Ehlert M et al (2013) Dobkowice revisited. Interdisciplinary research on an enclosure of the Jordanów culture. Anthropologie. International Journal of the Science of Man 51:375–396

  • Goldberg P, Berna F (2010) Micromorphology and context. Quat Int 214:56–62

    Article  Google Scholar 

  • Goldberg P, Macphail RI (2006) Practical and theoretical geoarchaeology. Blackwell Publishing, Malden, Oxford, Calden

    Google Scholar 

  • Harasimiuk M, Nowak J, Superson J (2008) Budowa geologiczna i rzeźba terenu. In: Uziak S, Turski R (eds) Środowisko przyrodnicze Lubelszczyzny. Lubelskie Towarzystwo Naukowe, Lublin, pp 9–73

    Google Scholar 

  • Holliday VT, Gartner WG (2007) Methods of soil P analysis in archaeology. J Archaeol Sci 34:301–333

    Article  Google Scholar 

  • Huisman DJ, Deeben J (2009) Soil features. In: Huisman DJ (ed) Degradation of archaeological remains. Sdu Uitgevers, Den Haag, pp 147–176

    Google Scholar 

  • Huisman DJ, Braadbaart F, van Wijk IM, van Os BJH (2012) Ashes to ashes, charcoal to dust: micromorphological evidence for ash-induced disintegration of charcoal in Early Neolithic (LBK) soil features in Elsloo (the Netherlands). J Archaeol Sci 39:994–1004

    Article  Google Scholar 

  • Huisman DJ, Brounen F, Lohof E et al (2014) Micromorphological study of Early Neolithic (LBK) soil features in the Netherlands. J Archaeol Low Ctries 5:107–133

    Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Karkanas P, Goldberg P (2008) Micromorphology of sediments: deciphering archaeological context. Isr J Earth Sci 56:63–71

    Article  Google Scholar 

  • Kaszewski B (2008) Warunki klimatyczne Lubelszczyzny/climatic conditions of the Lublin Region/. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin

    Google Scholar 

  • Keeley LH, Fontana M, Quick R (2007) Baffles and bastions: the universal features of fortifications. J Archaeol Res 15:55–95

    Article  Google Scholar 

  • Kondracki J (2000) Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Kovárník J, Hejcman M, Lisá L, Tirpák J (in press) Neolithic Rondels in Central Europe were areas with missing settlement activities—application of geophysical, archaeological, micromorphological and geochemical approach on the ditch infill

  • Kowalewska-Marszałek H (2012) Neolithic fortified sites and settlement patterns on the Sandomierz Loess Upland. In: Bertemes F, Meller H (eds) Neolithische Kreisgrabenanlagen in Europa. Internationale Arbeitstagung vom 7. bis 9. Mai 2004 in Goeseck, Halle (Saale), pp 327–338

  • Kruk J, Milisauskas S (1981) Wyżynne osiedle neolityczne w Bronocicach woj. kieleckie. Archeol Pol 26:65–113

    Google Scholar 

  • Kruk J, Milisauskas S (1985) Bronocice. Osiedle obronne ludności kultury lubelsko-wołyńskiej/2800–2700 lat p.n.e/. Zakład Narodowy im. Ossolińskich, Wrocław, Warszawa, Kraków, Gdańsk, Łódź

    Google Scholar 

  • Kühn P, Aguilar J, Miedema R (2010) Textural Pedofeatures and related horizons. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 217–250

    Chapter  Google Scholar 

  • Kuper, Lüning J, Stehli P, Zimmermann A (1977) Der Bandkeramische Siedlungsplatz Langweiler 9, Gemeinde Aldenhoven. Kreis Dueren, Bonn

    Google Scholar 

  • Lauer F, Pätzold S, Gerlach R, Protze J, Willbold S, Amelung W (2013) Phosphorus status in archaeological arable topsoil relicts–is it possible to reconstruct conditions for prehistoric agriculture in Germany? Geoderma 207-208:111–120

    Article  Google Scholar 

  • Le Bayon R-C, Binet F (2006) Earthworms change the distribution and availability of phosphorous in organic substrates. Soil Biol Biochem 38:235–246

    Article  Google Scholar 

  • Leopold M, Hürkamp K, Völkel J, Schmotz K (2011) Black soils, sediments and brown calcic luvisols: a pedological description of a newly discovered neolithic ring ditch system at Stephansposching, Eastern Bavaria, Germany. Quat Int 243:293–304

    Article  Google Scholar 

  • Licznar S, Maruszczak H (1998) Charakterystyka gleb kopalnych i współczesnych z rejonu kurhanów neolitycznych na Grzędzie Sokalskiej (Polska SE) przy zastosowaniu metod submikromorfologicznych. Rocz Glebozn – Soil Sci Ann 49(3/4):105–118

    Google Scholar 

  • Lisá L, Bajer A, Válek D et al (2013) Micromorphological evidence of Neolithic rondel-like ditch infillings; case studies from Těšetice-Kyjovice and Kolín, Czech Republic. Interdiscip Archaeol 4:135–146

    Google Scholar 

  • Lisá L, Komoróczy V et al (2015) How were the ditches filled? Sedimentological and micromorphological classification of formation processes within graben-like archaeological objects. Quat Int 370:66–76

    Article  Google Scholar 

  • Loishandl-Weisz H, Peticzka R (2010) Verfüllungmechanismen des Spitygrabens der mittleneolithischen Kreisgrabenanlage Steinabrunn. Niederösterreich Archaeol Austriaca 91(2007):141–162

    Google Scholar 

  • Maciejczuk J (1986) Sprawozdanie z badań na osadzie KPL w Mikulinie stan. 6 gmina Tyszowce. In: Sprawozdania z badań terenowych w województwie zamojskim w 1986 roku. Zamość, pp 3–6

  • Macphail RI (2007) Soils and deposits: micromorphology. In: the Early Neolithic on the Great Hungarian Plain. Investigations of the Körös culture site of Ecsegfalva 23, County Békés. Archaeological Institute of the Hungarian Academy of Sciences, Budapest, pp 17–53

    Google Scholar 

  • Macphail RI (2010) Bavarian LBK (sites of Niederhummel and Wang), Germany: soil micromorphology and microchemistry. Unpublished Report for School of History and Archaeology, Cardiff University

  • Macphail RI, Courty MA, Gebhardt A (1990) Soil micromorphological evidence of early agriculture in North-West Europe. World Archaeol 22:53–69

    Article  Google Scholar 

  • Macphail RI, Haită C, Bailey DW et al (2008) The soil micromorphology of enigmatic Early Neolithic pit-features at Măgura, southern Romania. Stud Preistorie 5:61–77

    Google Scholar 

  • Maruszczak H (1972) Wyżyny Lubelsko-Wołyńskie. In: Geomorfologia Polski. Klimaszewski M, Warszawa, pp 340–384

    Google Scholar 

  • Mierzejewski MP (ed) (1992) Badania elementów tektoniki na potrzeby kartografii wiertniczej i powierzchniowej. Państwowy Instytut Geologiczny, Warszawa

    Google Scholar 

  • Mücher, Steijn, Kwaad (2010) Colluvial and mass wasting deposits. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 37–48

    Chapter  Google Scholar 

  • Oonk S, Slomp C, Huisman DJ (2009) Geochemistry as an aid in archaeological prospection and site interpretation: current issues and research directions. Archaeol Prospect 16:35–51

    Article  Google Scholar 

  • Pagliai M, Stoops G (2010) Physical and biological surface crusts and seals. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 419–440

    Chapter  Google Scholar 

  • Pavlů I (1990) Die charakteristischen Einfüllungen von Grabenanlagen. Jahresschr für Mitteldtsch Vorgesch 73:171–178

    Google Scholar 

  • Prusinkiewicz Z, Bednarek R, Kośko A, Szmyt M (1998) Paleopedological studies of the age and properties of illuvial bands at an archaeological site. Quat Int 51/52:195–201

    Article  Google Scholar 

  • Rapp GR, Hill CL (2006) Geoarchaeology: the earth-science approach to archaeological interpretation. Yale University Press, New Haven, London

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, et al (2013) IntCal13 and Marine 13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP

  • Schiffer MB (1983) Toward the identification of formation processes. Am Antiq 48:675–706

    Article  Google Scholar 

  • Schiffer MB (1987) Formation processes of the archaeological record. University of Utah Press, Salt Lake City

    Google Scholar 

  • Slager S, van de Wetering J (1977) Soil formation in archaeological pits and adjacent loess soils in southern Germany. J Archaeol Sci 4:259–267

    Article  Google Scholar 

  • Stein JK (1983) Earthworm activity: a source of potential disturbance of archaeological sediments. Am Antiq 48:277–289

    Article  Google Scholar 

  • Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison

    Google Scholar 

  • van Reeuwijk LP (2002) Procedures for soil analysis, 6th edn. World Soil Information, Wagenigen

    Google Scholar 

  • Weiner S (2010) Microarchaeology: beyond the visible archaeological record. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wells CE, Terry RE (2007) Introduction to the special issue: advances in geoarchaeological approaches to Anthrosol chemistry, part I: agriculture. Geoarchaeology 22:285–290

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Cezary Kabała for reviewing an earlier version of the paper, conducting the physico-chemical analyses and soil descriptions. Many thanks to Lenka Lisá and Richard Macphail for discussions on the micromorphology of European Neolithic enclosure ditches, to Julie Boreham for preparing the thin sections, to Daniel Makowiecki for analysis of the faunal remains, to Tomasz Goslar for 14C measurements and to Jan Reder for geomorphological consultations. We would also like to thank the Editor and two anonymous Reviewers for comments which helped to steer the paper in the proper direction. The micromorphological analysis was conducted by MK using equipment belonging to the Institute of Geological Sciences, University of Wrocław, by kind permission of Piotr Gunia. The physico-chemical analyses of bulk samples were financed from research grant 1358/M/IAR/15 awarded by the Faculty of Historical and Pedagogical Sciences, University of Wrocław, whereas the manufacturing of micromorphological slides was funded by the Archaeologia Silesiae Science Foundation. The excavations conducted in 2012–2013 by TJCh and AZ were supported with statutory funds of the Institute of Archeology, Maria Curie-Skłodowska University in Lublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Krupski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupski, M., Chmielewski, T.J., Furmanek, M. et al. In search of use patterns of archaeological features on multi-cultural sites. A microarchaeological case study of ditch infill formation at an Eneolithic enclosure in Mikulin (Eastern Poland). Archaeol Anthropol Sci 11, 1739–1756 (2019). https://doi.org/10.1007/s12520-018-0632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-018-0632-8

Keywords

Navigation