Skip to main content
Log in

Molecular medicine of fragile X syndrome: based on known molecular mechanisms

  • Review article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans.

Data sources

Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials.

Results

The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed.

Conclusions

Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagerman R, Hoem G, Hagerman P. Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol Autism 2010;1:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hunter J, Rivero-Arias O, Angelov A, Kim E, Fotheringham I, Leal J. Epidemiology of fragile X syndrome: a systematic review and meta-analysis. Am J Med Genet A 2014;164A:1648–1658.

    Article  PubMed  Google Scholar 

  3. Wang T, Bray SM, Warren ST. New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 2012;22:256–263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Reiss AL, Hall SS. Fragile X syndrome: assessment and treatment implications. Child Adolesc Psychiatr Clin N Am 2007;16:663–675.

    Article  PubMed  Google Scholar 

  5. Hatton DD, Hooper SR, Bailey DB, Skinner ML, Sullivan KM, Wheeler A. Problem behavior in boys with fragile X syndrome. Am J Med Genet 2002;108:105–116.

    Article  PubMed  Google Scholar 

  6. Finucane B, Abrams L, Cronister A, Archibald AD, Bennett RL, McConkie-Rosell A. Genetic counseling and testing for FMR1 gene mutations: practice guidelines of the national society of genetic counselors. J Genet Couns 2012;21:752–760.

    Article  PubMed  Google Scholar 

  7. Bailey DB Jr, Raspa M, Bishop E, Olmsted M, Mallya UG, Berry-Kravis E. Medication utilization for targeted symptoms in children and adults with fragile X syndrome: US survey. J Dev Behav Pediatr 2012;33:62–69.

    Article  PubMed  Google Scholar 

  8. Berry-Kravis E, Potanos K. Psychopharmacology in fragile X syndrome-present and future. Ment Retard Dev Disabil Res Rev 2004;10:42–48.

    Article  PubMed  Google Scholar 

  9. Brown WT, Jenkins EC, Friedman E, Brooks J, Cohen IL, Duncan C, et al. Folic acid therapy in the fragile X syndrome. Am J Med Genet 1984;17:289–297.

    Article  PubMed  CAS  Google Scholar 

  10. Hilton DK, Martin CA, Heffron WM, Hall BD, Johnson GL. Imipramine treatment of ADHD in a fragile X child. J Am Acad Child Adolesc Psychiatry 1991;30:831–834.

    PubMed  CAS  Google Scholar 

  11. Cohen IL, Tsiouris JA, Pfadt A. Effects of long-acting propranolol on agonistic and stereotyped behaviors in a man with pervasive developmental disorder and fragile X syndrome: a double-blind, placebo-controlled study. J Clin Psychopharmacol 1991;11:398–399.

    PubMed  CAS  Google Scholar 

  12. Strom CM, Brusca RM, Pizzi WJ. Double-blind, placebocontrolled crossover study of folinic acid (Leucovorin) for the treatment of fragile X syndrome. Am J Med Genet 1992;44:676–682.

    Article  PubMed  CAS  Google Scholar 

  13. Hagerman RJ, Murphy MA, Wittenberger MD. A controlled trial of stimulant medication in children with the fragile X syndrome. Am J Med Genet 1988;30:377–392.

    Article  PubMed  CAS  Google Scholar 

  14. Erickson CA, Stigler KA, Wink LK, Mullett JE, Kohn A, Posey DJ, et al. A prospective open-label study of aripiprazole in fragile X syndrome. Psychopharmacology (Berl) 2011;216:85–90.

    Article  CAS  Google Scholar 

  15. Hagerman RJ, Hills J, Scharfenaker S, Lewis H. Fragile X syndrome and selective mutism. Am J Med Genet 1999;83:313–317.

    Article  PubMed  CAS  Google Scholar 

  16. Indah Winarni T, Chonchaiya W, Adams E, Au J, Mu Y, Rivera SM, et al. Sertraline may improve language developmental trajectory in young children with fragile x syndrome: a retrospective chart review. Autism Res Treat 2012;2012:104317.

    PubMed  PubMed Central  Google Scholar 

  17. Hagerman RJ, Hagerman PJ. Fragile X syndrome: diagnosis, treatment, and research. Baltimore: Johns Hopkins University Press, 2002.

    Book  Google Scholar 

  18. Berry-Kravis E, Sumis A, Hervey C, Nelson M, Porges SW, Weng N, et al. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr 2008;29:293–302.

    Article  PubMed  Google Scholar 

  19. National Fragile X Foundation, 2014. www.fragilex.org/2014/research/opportunities-for-families/alcobra-ltd-announces-anew-clinical-trial-enrolling-subjects-with-fragile-x-syndromein-2014 (accessed July 11, 2014).

  20. Jacquemont S, Berry-Kravis E, Hagerman R, von Raison F, Gasparini F, Apostol G, et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology (Berl) 2014;231:1237–1250.

    Article  CAS  Google Scholar 

  21. Berry-Kravis E, Knox A, Hervey C. Targeted treatments for fragile X syndrome. J Neurodev Disord 2011;3:193–210.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wijetunge LS, Chattarji S, Wyllie DJ, Kind PC. Fragile X syndrome: from targets to treatments. Neuropharmacology 2013;68:83–96.

    Article  PubMed  CAS  Google Scholar 

  23. Reiss AL, Abrams MT, Greenlaw R, Freund L, Denckla MB. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat Med 1995;1:159–167.

    Article  PubMed  CAS  Google Scholar 

  24. Eliez S, Blasey CM, Freund LS, Hastie T, Reiss AL. Brain anatomy, gender and IQ in children and adolescents with fragile X syndrome. Brain 2001;124:1610–1618.

    Article  PubMed  CAS  Google Scholar 

  25. Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O’Hara R, et al. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008;63:40–51.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoeft F, Carter JC, Lightbody AA, Cody Hazlett H, Piven J, Reiss AL. Region-specific alterations in brain development in one-to three-year-old boys with fragile X syndrome. Proc Natl Acad Sci U S A 2010;107:9335–9339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hallahan BP, Craig MC, Toal F, Daly EM, Moore CJ, Ambikapathy A, et al. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study. Neuroimage 2011;54:16–24.

    Article  PubMed  Google Scholar 

  28. Hazlett HC, Poe MD, Lightbody AA, Styner M, MacFall JR, Reiss AL, et al. Trajectories of early brain volume development in fragile X syndrome and autism. J Am Acad Child Adolesc Psychiatry 2012;51:921–933.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng DX, Kelley RG, Quintin EM, Raman M, Thompson PM, Reiss AL. Cognitive and behavioral correlates of caudate subregion shape variation in fragile X syndrome. Hum Brain Mapp 2014;35:2861–2868.

    Article  PubMed  Google Scholar 

  30. Bruno JL, Shelly EW, Quintin EM, Rostami M, Patnaik S, Spielman D, et al. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study. J Neurodev Disord 2013;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology 1998;50:121–130.

    Article  PubMed  CAS  Google Scholar 

  32. Mazzocco MM, Kates WR, Baumgardner TL, Freund LS, Reiss AL. Autistic behaviors among girls with fragile X syndrome. J Autism Dev Disord 1997;27:415–435.

    Article  PubMed  CAS  Google Scholar 

  33. Utine GE, Akpinar B, Arslan U, Kiper PÖ, Volkan-Salanci B, Alanay Y, et al. Neurochemical evaluation of brain function with 1H magnetic resonance spectroscopy in patients with fragile X syndrome. Am J Med Genet A 2014;164A:99–105.

    Article  PubMed  CAS  Google Scholar 

  34. Cohen JD, Nichols T, Brignone L, Hall SS, Reiss AL. Insular volume reduction in fragile X syndrome. Int J Dev Neurosci 2011;29:489–494.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Suvrathan A, Hoeffer CA, Wong H, Klann E, Chattarji S. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Proc Natl Acad Sci U S A 2010;107:11591–11596.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suvrathan A, Chattarji S. Fragile X syndrome and the amygdala. Curr Opin Neurobiol 2011;21:509–515.

    Article  PubMed  CAS  Google Scholar 

  37. Kooy RF, Reyniers E, Verhoye M, Sijbers J, Bakker CE, Oostra BA, et al. Neuroanatomy of the fragile X knockout mouse brain studied using in vivo high resolution magnetic resonance imaging. Eur J Hum Genet 1999;7:526–532.

    Article  PubMed  CAS  Google Scholar 

  38. Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010;53:1023–1029.

    Article  PubMed  Google Scholar 

  39. Hinton VJ, Brown WT, Wisniewski K, Rudelli RD. Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 1991;41:289–294.

    Article  PubMed  CAS  Google Scholar 

  40. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001;98:161–167.

    Article  PubMed  CAS  Google Scholar 

  41. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 1997;94:5401–5404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ, et al. Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 2002;111:140–146.

    Article  PubMed  Google Scholar 

  43. McKinney BC, Grossman AW, Elisseou NM, Greenough WT. Dendritic spine abnormalities in the occipital cortex of C57BL/6 Fmr1 knockout mice. Am J Med Genet B Neuropsychiatr Genet 2005;136B:98–102.

    Article  PubMed  Google Scholar 

  44. Chen L, Toth M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 2001;103:1043–1050.

    Article  PubMed  CAS  Google Scholar 

  45. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 2002;99:7746–7750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004;27:370–377.

    Article  PubMed  CAS  Google Scholar 

  47. Gandhi RM, Kogan CS, Messier C. 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice. Front Cell Neurosci 2014;8:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chuang SC, Zhao W, Bauchwitz R, Yan Q, Bianchi R, Wong RK. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci 2005;25:8048–8055.

    Article  PubMed  CAS  Google Scholar 

  49. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005;49:1053–1066.

    Article  PubMed  CAS  Google Scholar 

  50. Su T, Fan HX, Jiang T, Sun WW, Den WY, Gao MM, et al. Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome. Psychopharmacology (Berl) 2011;215:291–300.

    Article  CAS  Google Scholar 

  51. Pop AS, Levenga J, de Esch CE, Buijsen RA, Nieuwenhuizen IM, Li T, et al. Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacology (Berl) 2014;231:1227–1235.

    Article  CAS  Google Scholar 

  52. Michalon A, Bruns A, Risterucci C, Honer M, Ballard TM, Ozmen L, et al. Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice. Biol Psychiatry 2014;75:189–197.

    Article  PubMed  CAS  Google Scholar 

  53. Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of fragile X syndrome in mice. Neuron 2007;56:955–962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Berry-Kravis E, Hessl D, Coffey S, Hervey C, Schneider A, Yuhas J, et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet 2009;46:266–271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jacquemont S, Curie A, des Portes V, Torrioli MG, Berry-Kravis E, Hagerman RJ, et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 2011;3:64ra1.

    Article  CAS  Google Scholar 

  56. National Fragile X Foundation, 2014. www.fragilex.org/2014/research/news-reports-and-commentaries/novartis-announcesresults-of-mavoglurant-mglur5-afq056-clinical-trials-and-theconclusion-of-the-long-term-extension-study (accessed July 11, 2014).

  57. Kim SH, Markham JA, Weiler IJ, Greenough WT. Aberrant earlyphase ERK inactivation impedes neuronal function in fragile X syndrome. Proc Natl Acad Sci U S A 2008;105:4429–4434.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 2010;30:694–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005;45:753–764.

    Article  PubMed  CAS  Google Scholar 

  60. Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol 2010;79:632–646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. King MK, Jope RS. Lithium treatment alleviates impaired cognition in a mouse model of fragile X syndrome. Genes Brain Behav 2013;12:723–731.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Chen X, Sun W, Pan Y, Yang Q, Cao K, Zhang J, et al. Lithium ameliorates open-field and elevated plus maze behaviors, and brain phospho-glycogen synthase kinase 3-beta expression in fragile X syndrome model mice. Neurosciences (Riyadh) 2013;18:356–362.

    Google Scholar 

  63. D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 2006;1121:238–245.

    Article  PubMed  CAS  Google Scholar 

  64. Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, et al. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 2003;37:417–431.

    Article  PubMed  CAS  Google Scholar 

  65. Heulens I, D’Hulst C, Van Dam D, De Deyn PP, Kooy RF. Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav Brain Res 2012;229:244–249.

    Article  PubMed  CAS  Google Scholar 

  66. El Idrissi A, Boukarrou L, Dokin C, Brown WT. Taurine improves congestive functions in a mouse model of fragile X syndrome. Adv Exp Med Biol 2009;643:191–198.

    Article  PubMed  CAS  Google Scholar 

  67. Isaacson JS, Hille B. GABA(B)-mediated presynaptic inhibition of excitatory transmission and synaptic vesicle dynamics in cultured hippocampal neurons. Neuron 1997;18:143–152.

    Article  PubMed  CAS  Google Scholar 

  68. Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS, Postma FR, et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Transl Med 2012;4:152ra128.

    Article  CAS  Google Scholar 

  69. Berry-Kravis EM, Hessl D, Rathmell B, Zarevics P, Cherubini M, Walton-Bowen K, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med 2012;4:152ra127.

    Article  CAS  Google Scholar 

  70. FRAXA Research Foundation, 2013. http://www.fraxa.org/seaside-stx209-arbaclofen (accessed July 11, 2014).

  71. Muddashetty RS, Kelic S, Gross C, Xu M, Bassell GJ. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 2007;27:5338–5348.

    Article  PubMed  CAS  Google Scholar 

  72. Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci U S A 2007;104:15537–15542.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Berry-Kravis E, Krause SE, Block SS, Guter S, Wuu J, Leurgans S, et al. Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: a controlled trial. J Child Adolesc Psychopharmacol 2006;16:525–540.

    Article  PubMed  Google Scholar 

  74. Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 2009;29:8688–8697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Erickson CA, Weng N, Weiler IJ, Greenough WT, Stigler KA, Wink LK, et al. Open-label riluzole in fragile X syndrome. Brain Res 2011;1380:264–270.

    Article  PubMed  CAS  Google Scholar 

  76. Erickson CA, Mullett JE, McDougle CJ. Brief report: acamprosate in fragile X syndrome. J Autism Dev Disord 2010;40:1412–1416.

    Article  PubMed  Google Scholar 

  77. Erickson CA, Wink LK, Ray B, Early MC, Stiegelmeyer E, Mathieu-Frasier L, et al. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology (Berl) 2013;228:75–84.

    Article  CAS  Google Scholar 

  78. Wang T, Bray SM, Warren ST. New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 2012;22:256–263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Christie SB, Akins MR, Schwob JE, Fallon JR. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J Neurosci 2009;29:1514–1524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011;146:247–261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Deng PY, Sojka D, Klyachko VA. Abnormal presynaptic shortterm plasticity and information processing in a mouse model of fragile X syndrome. J Neurosci 2011;31:10971–10982.

    Article  PubMed  CAS  Google Scholar 

  82. Deng PY, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V, et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 2013;77:696–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ferron L, Nieto-Rostro M, Cassidy JS, Dolphin AC. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat Commun 2014;5:3628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Khandjian EW, Corbin F, Woerly S, Rousseau F. The fragile X mental retardation protein is associated with ribosomes. Nat Genet 1996;12:91–93.

    Article  PubMed  CAS  Google Scholar 

  85. Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 2013;16:1530–1536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 2012;76:325–337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Udagawa T, Farny NG, Jakovcevski M, Kaphzan H, Alarcon JM, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med 2013;19:1473–1477.

    Article  PubMed  CAS  Google Scholar 

  88. Dziembowska M, Pretto DI, Janusz A, Kaczmarek L, Leigh MJ, Gabriel N, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet A 2013;161A:1897–1903.

    Google Scholar 

  89. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 2009;46:94–102.

    Article  PubMed  CAS  Google Scholar 

  90. Siller SS, Broadie K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis Model Mech 2011;4:673–685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Leigh MJ, Nguyen DV, Mu Y, Winarni TI, Schneider A, Chechi T, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. J Dev Behav Pediatr 2013;34:147–155.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pietrobono R, Pomponi MG, Tabolacci E, Oostra B, Chiurazzi P, Neri G. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res 2002;30:3278–3285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Torrioli MG, Vernacotola S, Peruzzi L, Tabolacci E, Mila M, Militerni R, et al. A double-blind, parallel, multicenter comparison of L-acetylcarnitine with placebo on the attention deficit hyperactivity disorder in fragile X syndrome boys. Am J Med Genet A 2008;146A:803–812.

    Article  PubMed  Google Scholar 

  94. Arnold LE, Amato A, Bozzolo H, Hollway J, Cook A, Ramadan Y, et al. Acetyl-L-carnitine (ALC) in attention-deficit/hyperactivity disorder: a multi-site, placebo-controlled pilot trial. J Child Adolesc Psychopharmacol 2007;17:791–802.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran-Hui Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SY., Wu, LQ. & Duan, RH. Molecular medicine of fragile X syndrome: based on known molecular mechanisms. World J Pediatr 12, 19–27 (2016). https://doi.org/10.1007/s12519-015-0052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-015-0052-0

Key words

Navigation