Skip to main content
Log in

High shear stress-induced pulmonary hypertension alleviated by endothelial progenitor cells independent of autophagy

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Pulmonary hypertension (PH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Endothelial progenitor cells (EPCs) have been proved to be a potential therapeutic strategy to treat PH. Autophagy has been found to be protective to hypoxia-induced PH. In this study, we applied high shear stress (HSS)-induced PH, and examined whether EPCs confer resistance against HSS-induced PH through autophagy.

Methods

Pulmonary microvascular endothelial cells (PMVECs) were cultured under HSS with pro-inflammatory factors in an artificial capillary system to mimic the PH condition. Levels of p62, a selective autophagy substrate, were quantified by western blotting. Cell viability was determined by trypan blue exclusion test.

Results

The p62 level in PMVECs was increased at 4 hours after HSS, peaked at 12 hours and declined at 24 hours. The cell viability gradually decreased. Compared with PMVECs cultured by empty medium, in cells cultured by EPC-conditioned medium (EPC-CM), the cell viability was significantly higher; however, p62 levels were also significantly higher, suggesting inhibition of autophagy by EPC-CM. Adding choloquine to suppress autophagy decreased the cell viability of PMVECs under PH.

Conclusions

EPC-CM could suppress the autophagic activity of PMVECs in HSS-induced PH. However, suppression of autophagy leads to cell death. EPCs could fight against PH through cellular or molecular pathways independent of autophagy. But it is not proved if induction of autophagy could be a potential strategy to treat HSS-induced PH as hypoxia-induced PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oakley CM, Rozkovec A. Primary pulmonary hypertension. Br Med J (Clin Res Ed) 1987;294:122–123.

    Article  CAS  Google Scholar 

  2. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013;62:D34–D41.

    Article  PubMed  Google Scholar 

  3. Hahn MS, McHale MK, Wang E, Schmedlen RH, West JL. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng 2007;35:190–200.

    Article  PubMed  Google Scholar 

  4. Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54:S20–S31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sakao S, Tatsumi K, Voelkel NF. Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 2009;10:95.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 2007;49:1566–1571.

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Strappe P, Chen S, Wang LX. Endothelial progenitor cells and pulmonary arterial hypertension. Heart Lung Circ 2014;23:595–601.

    Article  PubMed  Google Scholar 

  8. Nakahira K, Cloonan SM, Mizumura K, Choi AM, Ryter SW. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal 2014;20:474–494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, et al. Autophagic protein LC3B confers resistance against hypoxiainduced pulmonary hypertension. Am J Respir Crit Care Med 2011:183:649–658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Choi KS. Autophagy and cancer. Exp Mol Med 2012;44:109–120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 2008;28:6926–6937.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. De Meyer GR, Martinet W. Autophagy in the cardiovascular system. Biochim Biophys Acta 2009;1793:1485–1495.

    Article  PubMed  Google Scholar 

  13. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007;39:596–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, et al. Egr-1 regulates autophagy in cigarette smokeinduced chronic obstructive pulmonary disease. PLoS One 2008;3:e3316.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Barthelmes D, Irhimeh MR, Gillies MC, Zhu L, Shen W. Isolation and characterization of mouse bone marrow-derived Lin-/VEGF-R2+ progenitor cells. Ann Hematol 2013;92:1461–1472.

    Article  CAS  PubMed  Google Scholar 

  16. Xia L, Fu GS, Yang JX, Zhang FR, Wang XX. Endothelial progenitor cells may inhibit apoptosis of pulmonary microvascular endothelial cells: new insights into cell therapy for pulmonary arterial hypertension. Cytotherapy 2009;11:492–502.

    Article  CAS  PubMed  Google Scholar 

  17. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009;137:1062–1075.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013;368:1845–1846.

    Article  CAS  PubMed  Google Scholar 

  19. Mizumura K, Cloonan SM, Haspel JA, Choi AM. The emerging importance of autophagy in pulmonary diseases. Chest 2012;142:1289–1299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Teng RJ, Du J, Welak S, Guan T, Eis A, Shi Y, et al. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012;302:L651–L663.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Asosingh K, Farha S, Lichtin A, Graham B, George D, Aldred M, et al. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood 2012;120:1218–1227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Launay JM, Hervé P, Callebert J, Mallat Z, Collet C, Doly S, et al. Serotonin 5-HT2B receptors are required for bonemarrow contribution to pulmonary arterial hypertension. Blood 2012;119:1772–1780.

    Article  CAS  PubMed  Google Scholar 

  23. Mirsky R, Jahn S, Koskenvuo JW, Sievers RE, Yim SM, Ritner C, et al. Treatment of pulmonary arterial hypertension with circulating angiogenic cells. Am J Physiol Lung Cell Mol Physiol 2011;301:L12–L19.

    Article  CAS  PubMed  Google Scholar 

  24. Schiavon M, Fadini GP, Lunardi F, Agostini C, Boscaro E, Calabrese F, et al. Increased tissue endothelial progenitor cells in end-stage lung diseases with pulmonary hypertension. J Heart Lung Transplant 2012;31:1025–1030.

    Article  PubMed  Google Scholar 

  25. Lahm T, Petrache I. LC3 as a potential therapeutic target in hypoxia-induced pulmonary hypertension. Autophagy 2012;8:1146–1147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Long L, Yang X, Southwood M, Lu J, Marciniak SJ, Dunmore BJ, et al. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res 2013;112:1159–1170.

    Article  CAS  PubMed  Google Scholar 

  27. Wang HJ, Zhang D, Tan YZ, Li T. Autophagy in endothelial progenitor cells is cytoprotective in hypoxic conditions. Am J Physiol Cell Physiol 2013;304:C617–C626.

    Article  CAS  PubMed  Google Scholar 

  28. Jin Y, Choi AM. Cross talk between autophagy and apoptosis in pulmonary hypertension. Pulm Circ 2012;2:407–414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J 2008;410:525–534.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Hua Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, BJ., Chen, J., Chen, X. et al. High shear stress-induced pulmonary hypertension alleviated by endothelial progenitor cells independent of autophagy. World J Pediatr 11, 171–176 (2015). https://doi.org/10.1007/s12519-015-0008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-015-0008-4

Key words

Navigation