Skip to main content

Advertisement

Log in

Landslide susceptibility assessment using GIS-based multicriteria decision analysis (MCDA) along a part of National Highway-1, Kashmir- Himalayas, India

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The current study aims at GIS-based multicriteria decision analysis to generate a landslide-susceptible map from Baramulla to Uri Road segment along NH-1, Kashmir Himalaya, India. The landslide causative factors examined to generate our AHP matrix are slope gradient, elevation, slope aspect, curvature, distance to drainage, distance to roads, distance to lineaments, geology, land use/land cover, and Rainfall. The study mapped and identified the active landslides along NH-1 through extensive field investigations and other secondary data sources. The landslide events were dominated by rockfall and debris slides. Based on their importance in landslide occurrences, the thematic layers were given relative relevance scores using Saaty's scale. Besides, the Analytic Hierarchy Process was employed to normalize the relative weights and attributes of the various thematic layers. In addition, all thematic data layers were combined using a weighted linear approach to generate the landslide susceptibility map. Furthermore, the resultant landslide susceptibility map was classed into five categories viz., very high (24.18%), high (30.24%), medium (28.61%), low (15.28%), and very low (1.69%). The study reveals that 54.42% of the area falls under the high and very high susceptible zones. Likewise, 78.9% of overall model accuracy of final landslide susceptible zonation map was computed using the area under curve method. Moreover, this study would aid infrastructural, geo-environmental, and landslide hazard planning in the studied region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data sets that support the results of this study are present within the article.

References

  • Agarwal DK, Krishna AP, Joshi V, Kumar K, Palni LMS (1997) Perspectives of mountain risk engineering in the Himalayan Region. Himavikas Occasional Publication No. 10, G.B. Pant Institute of Himalayan Environment and Development, Almora (India), Gyanodaya Prakashan, Nainital, India. 244

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58(1):21–44

    Article  Google Scholar 

  • Althouse AD (2016) Statistical graphics in action: making better sense of the ROC curve. Int J Cardiol 215:9–10. https://doi.org/10.1016/j.ijcard.2016.04.026

    Article  Google Scholar 

  • Balew A, Alemu M, Leul Y, Feye T (2020) Suitable landfill site selection using GIS-based multi-criteria decision analysis and evaluation in Robe town Ethiopia. GeoJournal 87:895–920. https://doi.org/10.1007/s10708-020-10284-3

    Article  Google Scholar 

  • Bashir S, Ramkumar T (2021) A multi-temporal landslide inventory and hazard zonation using relative effect method along the Mughal Road Shopian, India. Disaster Adv 14(7):42. https://doi.org/10.25303/147da4221

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ Earth Sci 66:537–548

    Article  Google Scholar 

  • Beigh IH, Bukhari K (2023) Landslide hazard zonation using Bivariate Frequency ratio method along National highway-1 from Baramulla-Uri Road stretch, North Kashmir Himalayas, India. Disaster Adv 16(6):8–17. https://doi.org/10.25303/1606da08017

    Article  Google Scholar 

  • Bilham R, Bali BS (2014) A ninth-century earthquake-induced landslide and food in the Kashmir Valley and earthquake damage to Kashmir’s Medieval temples. Bull Earthq 12(1):79–109

    Article  Google Scholar 

  • Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413

    Article  Google Scholar 

  • Castellanos Abella EA (2008) Multi-scale Landslide Risk Assessment in Cuba, PhD thesis. Utrecht University, Netherlands, p 273

    Google Scholar 

  • Chaiyaphan C, Ransikarbum K, Sriariyanun M, Cheng YS, Rattanaporn K, Yasurin P et al (2020) Criteria Analysis of Food Safety using the Analytic Hierarchy Process (AHP) - A Case study of Thailand’s Fresh Markets. E3S Web Conf 141:02001. https://doi.org/10.1051/e3sconf/202014102001

    Article  Google Scholar 

  • Chen Z, Zhang B, Han Y, Zuo Z, Zhang X (2014) Modeling accumulated volume of landslides using remote sensing and DTM data. Remote Sens 6:1514–1537

    Article  Google Scholar 

  • Chingkhei RK, Shiroyleima A, Robert Singh L, Kumar A (2013) Landslide Hazard zonation in NH-1A in Kashmir Himalaya, India. Int J Geosci 4:1501–1508. https://doi.org/10.4236/ijg.2013.410147

    Article  Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43(1):27–29

    Article  Google Scholar 

  • Cruden D, VanDine DF (2013) Classification, description, causes and indirect effects—Canadian technical guidelines and best practices related to landslides: A national initiative for loss reduction; geological survey of Canada, Open File 7359; Natural Resources Canada: Ottawa, ON, Canada

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In Landslides, Investigation and Mitigation, 1st ed.; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 36–75

  • Dagdelenler G, Nefeslioglu HA, Gokceoglu C (2016) Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bull Eng Geol Env 75(2):575–590

    Article  Google Scholar 

  • Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM (2020) Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl Sci 10(7):2466. https://doi.org/10.3390/app10072466

    Article  CAS  Google Scholar 

  • Donnarumma A, Revellino P, Grelle G, Guadagno FM (2013) Slope angle as indicator parameter of landslide susceptibility in a geologically complex area. In: Margottini C, Canuti P, Sassa K, editors. Landslide Science and Practice. Berlin, Heidelberg: Springer; 425–33. https://doi.org/10.1007/978-3-642-31325-7_56

  • Fan W, Wei X, Cao Y, Zheng B (2017) Landslide susceptibility assessment using the certainty factor and analytic hierarchy process. J Mountain Sci 14(5):906–925. https://doi.org/10.1007/s11629-016-4068-2

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):99–111

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard 18(8):2161–2181

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(4):147–161

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinalli M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-case study. Cent Italy Geomorphol 31(1–4):181–216

    Article  Google Scholar 

  • Hussain G, Singh Y, Bhat GM (2015) Geotechnical investigation of slopes along the National Highway (NH-1D) from Kargil to Leh, Jammu and Kashmir (India). Transport Res Rec 5:56–67

    Google Scholar 

  • Hussain G, Yudhbir S, Ghulam MB (2018) Landslide susceptibility mapping along the National Highway 1D, between Kargil and Lamayuru, Ladakh Region, Jammu and Kashmir. Geol Soc India 91:457–466

    Article  Google Scholar 

  • Jamir I, Gupta V, Thong GT, Kumar V (2019) Litho-tectonic and precipitation implications on landslides, Yamuna valley, N.W. Himalaya Phys Geogr 41:1–24. https://doi.org/10.1080/02723646.2019.1672024

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Year b Cartography 7:186–190

    Google Scholar 

  • Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101(4):631–642

    Article  Google Scholar 

  • Kayastha P, Dhital MR, Smedt FD (2012) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed. West Nepal Computers Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Compu Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421

    Article  Google Scholar 

  • Khattak GA, Owen LA, Kamp U, Harp EL (2010) Evolution of earthquake-triggered landslides in the Kashmir Himalaya northern Pakistan. Geomorphology 115(12):102–108

    Article  Google Scholar 

  • Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87:271286

    Article  Google Scholar 

  • Lageson DR, Fort M, Bhattarai RR, Hubbard M (2016) Damage from the April–May 2015 Gorkha Earthquake Sequence in the Solukhumbu District (Everest Region), Nepal; GSA Annual Meeting: Denver. CO, USA

    Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin. Korea Environ Geol 40(9):1095–1113. https://doi.org/10.1007/s002540100310

    Article  Google Scholar 

  • Martha TR, Roy P, Jain N, Khanna K, Mrinalni K, Kumar KV, Rao PVN (2021) Geospatial landslide inventory of India—an insight into occurrence and exposure on a national scale. Landslides 1–17

  • Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6:17–26

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio Dempster-Shafer and weights-of-evidence models. J of Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Mohebbi M, Shakeri K, Ghanbarpour Y, Majzoub H (2013) Designing optimal multiple tuned mass dampersusing genetic algorithms (GAs) for mitigating the seismic response of structures. J Vib Control 19(4):605–625

    Article  Google Scholar 

  • Mohsin F, Gowhar M, Khader SA, Farooq M, Kanga S, Singh SK, Kumar P, Sahu N (2022) Management of landslides in a rural-urban transition zone using machine learning algorithms—a case study of a National Highway (NH-44), India, in the Rugged Himalayan Terrains. Land 11:884. https://doi.org/10.3390/land11060884

    Article  Google Scholar 

  • Myronidis D, Papageorgiou C, Theophanous S (2016) Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat Hazards 81(1):245–263. https://doi.org/10.1007/s11069-015-2075-1

    Article  Google Scholar 

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173

    Article  Google Scholar 

  • Nanda AM, Hassan UZ, Ahmad P, Kanth TA (2020) Landslide susceptibility assessment of national highway 1D from Sonamarg to Kargil, Jammu and Kashmir, India using frequency ratio method. Geo J 85(03):1–14

    Google Scholar 

  • Nanda AM, Yousuf M, Islam ZU, Ahmed P, Kanth TA (2020) Slope stability analysis along N.H. 1D from Sonamarg to Kargil, J&K, India: Implications for landslide risk reduction. J Geol Soc India 96:499–506

    Article  Google Scholar 

  • National Disaster Management Authority (2009) National disaster management guidelines-management of landslides and snow avalanches. A publication of the National Disaster Management Authority (NDMA), Government of India, New Delhi

  • NRSA (2001) Atlas on landslide hazard zonation mapping in the Himalayas of Uttarakhand and Himachal Pradesh states using remote sensing and GIS. National Remote Sensing Agency, Hyderabad

  • Ocakoglu F, Gokceoglu C, Ercanoglu M (2002) Dynamics of a complex mass movement triggered by heavy Rainfall: a case study from N.W. Turkey. Geomorphology 42(3–4):329–341. https://doi.org/10.1016/S0169-555X(01)00094-0

    Article  Google Scholar 

  • Ohlmacher GC (2007) Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng Geol 91(1–2):117–34. https://doi.org/10.1016/j.enggeo.2007.01.005

    Article  Google Scholar 

  • Owen LA, Kamp U, Ghazanfar KA, Harp EL, Kefer DK, Bauer MA (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94:1–9

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68:1443–1464

    Article  Google Scholar 

  • Patil AS, Bidyut BK, Sachin PS et al (2021) The Landslide Susceptibility Assessment using Bi-variate Statistical Information Value Model of Chenab River Valley, Jammu and Kashmir (India). Disaster Advances 14(11):44– 56. https://doi.org/10.25303/1411da4456

  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia M (2016) A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw 84:240–250

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz Watershed. Iran Nat Hazards 63(2):965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogrammetrie-Fernerkundung-Geoinformation 2010(1):17–32

  • Pradhan AMS, Kim YT (2016) Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. CATENA 140:125–139. https://doi.org/10.1016/j.catena.2016.01.022

    Article  Google Scholar 

  • Reichnenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically based landslide susceptibility models. Earth-Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001

    Article  Google Scholar 

  • Roy J, Saha S (2019) Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District West Bengal India. Geoenviron Disasters 6(1):1–18. https://doi.org/10.1186/s40677-019-0126-8

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234281

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty (1987) The analytic hierarchy process—what it is and how it is used. Mathi Model 9(3–5):161–176

    Article  Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  Google Scholar 

  • Saaty TL, Vargas LG (1980) Hierarchical analysis of behavior in competition: prediction in chess. Behav Sci 25(3):180–191. https://doi.org/10.1002/bs.3830250303

    Article  Google Scholar 

  • Saaty TL (2000) Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process (Analytic Hierarchy Process Series, Vol. 6). RWS Publications, Pittsburgh

  • Sangra R, Singh Y, Bhat GM, Pandita SK, Hussain G (2017) Geotechnical investigation on slopes failures along the Mughal Road from Bafiaz to Shopian, Jammu and Kashmir, India. J Geol Soc, India 90:616–622

    Article  Google Scholar 

  • Sati VP (2014) Towards Sustainable Livelihoods and Ecosystems, in Mountain Regions. Springer Cham, Germany. https://doi.org/10.1007/978-3-319-03533-8

    Book  Google Scholar 

  • Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques–a review. Geoenviron-Disasters 7(18):1–19. https://doi.org/10.1186/s40677-020-00152-0

    Article  Google Scholar 

  • Siddique T, Pradhan SP, Vishal V, Mondal MEA, Singh TN (2017) Stability assessment of Himalayan Road cut slopes along National Highway 58. India Environ Earth Sci 76(22). https://doi.org/10.1007/s12665-017-7091-x

  • Singh K, Kumar V (2018) Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J Mountain Sci 15(4):808–24. https://doi.org/10.1007/s11629-017-4634-2

    Article  Google Scholar 

  • Singh H, Som S (2016) Earthquake triggered landslide – Indian scenario. J Geol Soc India 87(1):105–112. https://doi.org/10.1007/s12594-016-0378-9

    Article  Google Scholar 

  • Singh Y, Sharma V, Pandita SK, Bhat GM, Thakur KK, Kotwal SS (2014) Investigation of landslide at Sangaldan near tunnel-47, on Katra Qazigund railway track, Jammu and Kashmir. J of Geol Soc of India 84(6):686–692

    Article  Google Scholar 

  • Tanyas H, van Westen CJ, Persello C, Alvioli M (2019) Rapid prediction of the magnitude scale of landslide events triggered by an earthquake. Landslides 16:661–676. https://doi.org/10.1007/s10346-019-01136-4

    Article  Google Scholar 

  • Thakur VC, Rawat BS (1992) Geologic map of Western Himalaya: Dehra Dun. India, Wadia Institute of Himalayan Geology, scale, 1(1,000,000)

  • Thanh LN, de Smedt F (2012) Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environ Earth Sci 66(7):1739–1752. https://doi.org/10.1007/s12665-011-1397-x

    Article  Google Scholar 

  • Thennavan E, Pattukandan Ganapathy G (2020) Evaluation of landslide hazard and its impacts on hilly environment of the Nilgiris District - a geospatial approach. Geoenviron Disasters 7(1). 10. 1186/s40677-019-0139-3

  • Tian Y, Xia OC, Liu Y, Wu L (2008) Effects of raster resolution on landslide susceptibility mapping: a case study of Shenzhen. Sci China Ser E Technol Sci 51(2):188–198

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Spec Rep 176:1133

    Google Scholar 

  • Xie XJ, Wei FQ, Zhang J (2015) Application of projection pursuit model to landslide risk classification assessment. Earth Sci J China Univ Geosci 40(9):1598–1606

    Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287

    Article  Google Scholar 

  • Yang W, Shen L, Shi P (2015) Mapping landslide risk of the world. World atlas of natural disaster risk. Springer, Berlin, Heidelberg, pp 57–66

    Chapter  Google Scholar 

  • Yang ZY, Pourghasemi HR, Lee YH (2016) Fractal analysis of rainfall-induced landslide and debris flow spread distribution in the Chenyulan Creek Basin, Taiwan. J Earth Sci 27(1):151–159

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B (2016) Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir. China Eng Geol 204:108–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Hussain Beigh.

Ethics declarations

Conflict of interest

The corresponding author declares that there is no conflict of interest on behalf of all authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beigh, I.H., Bukhari, S.K. Landslide susceptibility assessment using GIS-based multicriteria decision analysis (MCDA) along a part of National Highway-1, Kashmir- Himalayas, India. Appl Geomat (2024). https://doi.org/10.1007/s12518-024-00559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12518-024-00559-6

Keywords

Navigation