Skip to main content
Log in

Closed-form solution to point- and plane-based co-registration of terrestrial LiDAR point clouds

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Co-registration is required when the alignment of two or more point clouds obtained for mapping natural and built environments is needed. While closed-form solutions are suitable for co-registration, most of the existing approaches rely on unit quaternion solutions for the estimation of transformation parameters from point or plane correspondences. This paper presents a novel co-registration of terrestrial light detection and ranging point clouds solution to create globally consistent 3-D environments. Our method exploits the advantages of the dual quaternion solution combining both points and plane correspondences. The role of our relaxation labeling technique in 3-D matching (3PRL) is investigated, and its efficiency to find the best plane correspondences is shown. The paper also presents a method to treat degenerate plane configurations with corresponding virtual points. Experimental results reveal that our 3PRL technique can update and improve the 3-D matching probabilities using binary relations. At the same time, the proposed dual quaternions point- and plane-based optimization indicated that the mathematical optimization might represent a valid model for co-registration of point clouds. A closer inspection of co-registration accuracy revealed that the translation and rotation error mean decreased drastically, with margins between 0.10 m and 0.17 m and 0.01° and 0.33°, respectively. Experiments have shown that our method generally achieves better results than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aiger D, Mintra NJ, Cohen-Or D (2008) 4-points congruent sets for robust pairwise surface registration. ACM Trans GraphACM Trans Graph:1–10

  • Aoki Y, Goforth H, Srivatsan RA, Lucey S (2019) PointNetLK: robust & efficient point cloud registration using pointnet. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Barnea S, Filin S (2008) Keypoint based autonomous registration of terrestrial laser point-clouds. ISPRS J Photogram and Remote Sens 63(1):19–35. https://doi.org/10.1016/j.isprsjprs.2007.05.005

    Article  Google Scholar 

  • Besl PJ, Mckay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Google Scholar 

  • Bendels GH, Degener P, Wahl R, Kortgen M, Klein R (2004) Image-based registration of 3D-range data using feature surface elements. In: Proceedings of the 5th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST), Brussels, Belgium, pp 115–124

  • Böhm J, Becker S (2007) Automatic marker-free registration of terrestrial laser scans using reflectance. In proceedings of 8th Conference on optical 3D measurement techniques ETH Zurich-Switzerland 1:338–344

  • Borrmann D, Elseberg J, Lingmann K, Nuchter A, Hertzberg J (2008) Globally consistent 3D mapping with scan matching. Robotics Auton Syst 56:130–142

    Google Scholar 

  • Campbell R, Flynn P (1998) Model and range image features for free-form object recognition. Vision Interface 98:173–180

    Google Scholar 

  • Carlevaris-Bianco N, Ushani AK, Eustice RM (2016) University of Michigan North Campus long-term vision and lidar dataset. Int J Robotics Res 35(9):1023–1035

    Google Scholar 

  • Chen C, Hung Y, Cheng J (1998) A fast automatic method for registration of partially-overlapping range images,” Proc. ICCV

  • Chen C, Hung Y, Cheng J (1999) RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images, Trans. PAMI 21 (11)

  • Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image vis Comput 10(3):145–155

    Google Scholar 

  • Cheng L, Tong L, Li M, Liu Y (2013) Semi-automatic registration of airborne and terrestrial laser scanning data using building corner matching with boundaries as reliability check. Remote Sens 5:6260–6283

    Google Scholar 

  • Chua CS, Jarvis R (1996) 3D free-form surface registration and object recognition. Int J Comput Vision 17(1):77–99

    Google Scholar 

  • Daniilidis K (1999) Hand-eye calibration using dual quaternions. Int J Robotics Res 18(3):286–298

    Google Scholar 

  • Deng H, Birdal T, Ilic S (2018) Ppfnet: global context aware local features for robust 3d point matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 195–205

  • Deschaud JE (2018) IMLS-SLAM: Scan-to-model matching based on 3D data. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, pp 2480–2485

  • Dold C, Brenner C (2006) Registration of terrestrial laser scanning data using planar patches and image data. Int Archives Photogram Remote Sens Spatial Info Sci 36(5):25–27

    Google Scholar 

  • Dong Z, Yang B, Liang F, Huang R, Scherer S (2018) Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS J Photogram Rem Sens 144:61–79

    Google Scholar 

  • Dorai C, Weng J, Jain, A (1997) Optimal registration of object views using range data, Trans. PAMI, 19 (10)

  • Dos Santos DR, Dal Poz AP, Khoshelham K (2013) Indirect georeferencing of terrestrial laser scanning data using control lines. Photogram Rec 28(143):276–292

    Google Scholar 

  • Ezuz D, Solomon J, Kim VG, Ben-Chen M (2017) GWCNN: a metric alignment layer for deep shape analysis. Computer Graphics Forum. https://doi.org/10.1111/cgf.13244

    Article  Google Scholar 

  • Fan J, Yang J, Zhao Y, Ai D, Liu Y, Wang G (2016) Convex hull aided registration method (charm)", IEEE transactions on visualization and computer graphics

  • Faugeras OD, Hebert M (1986) The representation, recognition, and locating of 3-D objects. Int J Robot Res 5(3):27–52

  • Feldmar J, Ayache N (1996) Rigid, affine and locally affine registration of free-from surfaces. Int J Comput Vision 18(2):99–119

    Google Scholar 

  • Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Google Scholar 

  • Fitzgibbon AW (2003) Robust registration of 2D and 3D point sets. Image vis Comput 21(13):1145–1153

    Google Scholar 

  • Galo M, Tozzi CL (2004) Feature-point based matching: a sequential approach based on relaxation labeling and relative orientation. J WSCG (12)1:113–120

  • Galo M, Tozzi CL (1996) Surface reconstruction using multiple light sources and perspective projection. Proceedings, IEEE - 1996 International Conference on Image Processing, Lausanne, Switzerland, pp. 309–312

  • Gojcic Z, Zhou C, Wegner JD, Wieser A (2019) The perfect match: 3d point cloud matching with smoothed densities. In 16 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5545–5554

  • Goforth H, Aoki Y, Srivatsan RA, Lucey S (2019) PointNetLK: Robust & efficient pointcloudregistrationusingPointNet. In IEEE Conference on Computer Vision and Pattern Recognition 9 (CVPR)

  • Golub GH, Van Loan CF (1980) An analysis of the total least squares problem. SIAM J Numer Anal 17:883–893. https://doi.org/10.1137/0717073

  • Godin G, Boulanger P (1995) Range image registration through viewpoint invariant computation of curvature. In: IAPRS, vol. 30(5/W1), pp 70–175

  • Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59:151–174

  • He W, Ma H, Zha (2005) Automatic registration of range images based on correspondence of complete plane patches, in 5th International Conference on 3-D Digital Imaging and Modeling, 470–475

  • Henry P, Krainin M, Herbest E, Ren X, Fox D (2012) RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int J Robot Res 31:647–663

    Google Scholar 

  • Higuchi K, Herbert M, Ikeuchi K (1995) Building 3-D models from unregistered range images. Graphical Models and Image Processing 57(4):315–333

    Google Scholar 

  • Huang Z, Liu Y, Zhan C, Lin C, Cai W, Chen Y (2021) A novel group recommendation model with two-stage deep learning. IEEE Trans Syst Man Cybernetics: Syst 52(9):5853–5864. https://doi.org/10.1109/TSMC.2021.3131349

    Article  Google Scholar 

  • Huber DF, Hebert M (2003) Fully automatic registration of multiple 3D data sets. Image vis Comput 21(7):637–650

    Google Scholar 

  • Hummel RA, Zucker SW (1983) On the foundations of relaxation labelling processes. IEEE Trans Pattern Anal Machine Intell 5(3):267–287

    Google Scholar 

  • Ji Z, Song M, Guan H, Yu Y (2015) Accurate and Robust Registration of High-Spped Railway Viaduct Point Clouds Using Closing Conditions and External Geometric Constraints. ISPRS J Photogram Remote Sens 106:55–67. https://doi.org/10.1016/j.isprsjprs.2015.04.016

    Article  Google Scholar 

  • Johnson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach Intell 21(5):433–449

    Google Scholar 

  • Kang K, Li J, Zhang L, Zhao Q, Zlatanova S (2009) Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images. Sensors 9:2621–2646. https://doi.org/10.3390/s90402621

    Article  Google Scholar 

  • Khoshelham K (2016) Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds. ISPRS J Photogramm Remote Sens 114:78–91

  • Li Y, Bu R, Sun M, Wu W, Di X, Chen B (2018) PointCNN: convolutionon X-transformed points in advances in neural information processing systems. https://arxiv.org/abs/1801.07791v5

  • Li J, Lee GH (2019) Usip: Unsupervised stable interest point detection from 3d point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 361–370

  • Li J, Lee GH (2021) DeepI2P: Image-to-point cloud registration via deep classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 15960–15969

  • Liu Z, Zhang Y, Lu S, Zheng H, Ye D (2017) Closed-loop detection and pose optimization of non-cooperation rotating targets. Opt Precis Eng 25(4):1036–1043

    Google Scholar 

  • Lu F, Milios E (1997) Globally consistent range scan alignment for environment mapping. Auton Robot 4:333–349

    Google Scholar 

  • Magnusson M, Lilienthal AJ, Duckett T (2007) Scan registration for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics 24(10):803–827

    Google Scholar 

  • Miola GA, dos Santos DR (2020) A framework for registration of multiple point clouds derived from a static terrestrial laser scanner system. Appl Geomatics 12:409–425

  • Okatani IS, Deguchi K (2002) A method for find registration of multiple view range image considering the measurement error properties. Comput vis Image Underst 87(1–3):66–77

    Google Scholar 

  • Pathak K, Birk A, Vaskevicius N, Pfingsthorn M, Schwertfeger S, Poppinga J (2010) Online Three-Dimensional SLAM by Registration of Large Planar Surface Segments and Closed-Form Pose-Graph Relaxation. J Field Robot 27(1):52–84

    Google Scholar 

  • Pauly M, Gross M, Kobbelt LP (2002) Efficient simplification of point-sampled surfaces. Proc Conf vis 2002:163–170

    Google Scholar 

  • Pavan NL, Dos Santos DR (2017) A global closed-form refinement for consistent TLS data registration”. IEEE Geosci Remote Sens Lett 14(7):1131–1135

    Google Scholar 

  • Pavelka K, Matoušková E, Pavelka Jr K (2019) The contribution of geomatic technologies to BIM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5/W3

  • Prosková J (2011) Application of dual quaternions algorithm for geodetic datum transformation. J Appl Math IV(2):225–235

    Google Scholar 

  • Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet deep learning on point sets for 3D classification and segmentation. Proc Computer Vision and Pattern Recognition CVPR 2017 IEEE 1(2):4

    Google Scholar 

  • Rabbani T, Van Den Heuvel F, Vosselmann G (2006) Segmentation of point clouds using smoothness constraint. Int Arch Photogramm Remote Sens Spat Inf Sci 36(5):248–253

    Google Scholar 

  • Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, IEEE Press, 145–152

  • Rusu RB and Cousins S (2011) 3D is here: point cloud library (PCL). In IEEE International Conference on Robotics and Automation, 1–4

  • Rusu RB,Marton ZC, Blodow N, Beetz M (2008) Persistent point feature histograms for 3D point clouds. In Proceedings of the 10th International Conference on Intelligent Autonomous Systems (IAS-10)

  • Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3D registration. IEEE International Conference on Robotics and Automation (ICRA) 3212–3217

  • Rusu RB, Bradski G, Thibaux R, Hsu J (2010) Fast 3d recognition and pose using the viewpoint feature histogram. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2155–2162

  • Segal A, Haehnel D, Thrun S (2009) Generalized-ICP, in robotics: science and systems.

  • Sipiran I, Bustos B (2011) Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis Comput 27:963–976

  • Sharp GC, Lee SW, Wehe DK (2002) ICP registration using invariant features. IEEE Trans Pattern Anal Mach Intell 24(1):90–102

    Google Scholar 

  • Silva L, Bellon ORP, Boyer KL (2005) Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans Pattern Anal Mach Intell 27(5):762–776

    Google Scholar 

  • Skrzypczak I, Oleniacz G, Leśniak A, Zima K, Mrówczyńska M, Kazak JK (2022) Scan-to-BIM method in construction: assessment of the 3D buildings model accuracy in terms inventory measurements. Building Res Info 50(8):859–880. https://doi.org/10.1080/09613218.2021.2011703

    Article  Google Scholar 

  • Soucy G, Ferrie FP (1997) Surface recovery from range images using curvature and motion consistency. Comput vis Image Underst 65(1):1–18

    Google Scholar 

  • Su H, Jampani V, Sun D, Maji S, Kalogerakis E, Yang M, Kautz J (2018) SPLATNet: sparse lattice networks for point cloud processing. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR). https://arxiv.org/abs/1802.08275

  • Tombari F, Salti S, Di Stefano L (2013) Performance evaluation of 3d keypoint detectors. Int J Comput Vis 102(1–3):198–220

  • Theiler PW, Wegner JD, Schindler K (2014) Keypoint-based 4-points congruent sets–automated marker-less registration of laser scans. ISPRS J Photogram and Remote Sens 96:149–163. https://doi.org/10.1016/j.isprsjprs.2014.06.015

    Article  Google Scholar 

  • Theiler PW, Wegner JD, Schindler K (2015) Globally consistent registration of terrestrial laser scans via graph optimization. ISPRS J Photogrammetric Remote Sens 109(2015):126–138

    Google Scholar 

  • Thirion JP (1996) New feature points based on geometric invariants for 3d image registration. Int J Comput Vision 18(2):121–137

    Google Scholar 

  • Walker MW, Shao L, Volz RA (1991) Estimating 3-D location parameters using dual number quaternions. CVGIP Image Understanding 54(3):358–367

    Google Scholar 

  • Wang Y, Solomon JM (2019) Deep closest point: Learning representa tions for point cloud registration. https://arxiv.org/abs/1905. 03304v1. Accessed 15 Feb 2023

  • Wall ME, Rechtsteiner A, and Rocha LM (2003) Singular value decomposition and principal component analysis, In: a practical approach to microarray data analysis, 91–109, Springer

  • Wang Y, Wang Y, Wu K, Yang H, Zhang H (2014) A dual quaternion-based, closed-form pairwise registration algorithm for point clouds. Int Soc Photogrammetry Remote Sens 94:63–69

    Google Scholar 

  • Wang Y, Zheng N, Bian Z (2021) A closed-form solution to planar feature-based registration of LiDAR point clouds. ISPRS Int J Geo-Inf 10:435

    Google Scholar 

  • Weber T, Hansch R, Hellwich O (2015) Automatic registration of unordered point clouds acquired by Kinect sensors using an overlap heuristic. ISPRS Journal Photogrametric Remote Sensing 102:96–109

    Google Scholar 

  • Weinmann M, Hinz S, Jutzi B (2011) Fast and automatic image-based registration of TLS data. ISPRS J Photogram and Remote Sens 66(6):62–70

    Google Scholar 

  • Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei Yuan, and Shiyu Song (2019) DeepICP: an end-to-end deep neural network for 3d point cloud registration. The IEEE International Conference on Computer Vision (ICCV), 12–21. https://doi.org/10.1109/ICCV.2019.00010

  • Wyngaerd JV, Van Gool L, Kock R, Proesmans M (2002) Invariant-based registration of surface patches. Proceeding of IEEE International Conference on Computer Vision, 301–306

  • Xiao J, Adler B, Zhang J, Zhang H (2013) Planar segment based three-dimensional point cloud registration in outdoor environments. J Field Robotics 30:552–582. https://doi.org/10.1002/rob.21457

    Article  Google Scholar 

  • Xu Y, Boerner R, Yao W, Hoegner L, Stilla U (2019) Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets. ISPRS J Photogram and Remote Sens 151:106–123

    Google Scholar 

  • Yan-Bin, J. Dual Quaternions. Course handouts, 2018. URL: < https://faculty.sites.iastate.edu/jia/files/inline-files/dual-quaternion.pdf>. Accessed August 03, 2020

  • Yang R, Allen P (1998) Registering, integrating, and building CAD models from range data. Proceeding of IEEE International Conference on Robotics and Automation, 3115–3120

  • Yew ZJ, Lee GH (2020) Rpm-net: robust point matching using learned features. In Conference on Computer Vision and Pattern Recognition (CVPR)

  • Yi L, Huang H, Liu D, Kalogerakis E, Su H, Guibas L (2018) Deep part induction from articulated object pairs. ACM Transactions on Graphics (TOG) 37(6):209:1–209:15. https://doi.org/10.1145/3272127.3275027

  • Yuan W, Khot T, Held D, Mertz C, Hebert M (2018) Pcn: point completion network. In: Proceedings of the International Conference on 3D Vision (3DV), pp 728–737

  • Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R, Smola A (2017) Deep sets. In advances in neural information processing systems. https://arxiv.org/abs/1703.06114

  • Zeng A, Song S, Nießner M, Fisher M, Xiao J, Funkhouser T (2017) 3dmatch: learning local geometric descriptors from RGB-D reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1802–1811

  • Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vision 19(2):119–152

    Google Scholar 

  • Zucker SW, Hummel RA, Rosenfield A (1993) An application of relaxation labelling to line and curve enhancement. IEEE Transactions on Computer 24(4):394–403

    Google Scholar 

Download references

Funding

This work was supported in part by the Brazilian National Council for Scientific and Technological Development (CNPq) under Grant no. 301073/2019–8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizeu Martins de Oliveira Jr..

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Appendix

Appendix

For the estimation of the translation parameters, we proposed the minimization of the point to plane distance as follows:

$$\mathrm{E}={\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left(-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}+{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}+{\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}} \right)}^{2}=\mathrm{min}$$
(A1)

The Eq. A1 can be rewritten as follows:

$$\begin{array}{c}\mathrm{E}={\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}+{\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}} \right)}^{2}\\ ={\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left({\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)}^{2}\right.\\ \begin{array}{c}+2\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)\\ \left.+{\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)}^{2}\right)=\\ \begin{array}{c}={\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)}^{2}+2{\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)\\ +{\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)}^{2}\end{array}\end{array}\end{array}$$
(A2)

Assuming that all normal vectors \({\mathrm{n}}_{\mathrm{i}}^{\mathrm{r}}\) have unit norm for \(1 \le \mathrm{ i }\le \mathrm{ n}\), we have:

$$\mathrm{E}={\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)}^{2}+2{\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)+{\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)}^{2}=\mathrm{min}$$
(A3)

Considering that \({\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)}^{2}=\mathrm{c}\):

$$\mathrm{E}=\mathrm{c}+{\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)}^{2}+2{\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}} \cdot \overrightarrow{\mathrm{t}}\right)\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)$$
(A4)

By developing the Eq. (A4), we find the Eq. (22). Introducing the quaternions concept and rewritten the left product \({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}\mathrm{q}\), we have:

$$\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\mathrm{Q}=\left[\begin{array}{cc}\begin{array}{c}\begin{array}{cc}0& -{\mathrm{n}}_{{\mathrm{x}}_{\mathrm{i}}}\\ {\mathrm{n}}_{{\mathrm{x}}_{\mathrm{i}}}& 0\end{array}\\ \begin{array}{cc}{\mathrm{n}}_{{\mathrm{y}}_{\mathrm{i}}}& {\mathrm{n}}_{{\mathrm{z}}_{\mathrm{i}}}\\ {\mathrm{n}}_{{\mathrm{z}}_{\mathrm{i}}}& {-\mathrm{n}}_{{\mathrm{y}}_{\mathrm{i}}}\end{array}\end{array}& \begin{array}{cc}\begin{array}{c}\begin{array}{c}-{\mathrm{n}}_{{\mathrm{y}}_{\mathrm{i}}}\\ {-\mathrm{n}}_{{\mathrm{z}}_{\mathrm{i}}}\end{array}\\ \begin{array}{c}0\\ {\mathrm{n}}_{{\mathrm{x}}_{\mathrm{i}}}\end{array}\end{array}& \begin{array}{c}\begin{array}{c}-{\mathrm{n}}_{{\mathrm{z}}_{\mathrm{i}}}\\ {\mathrm{n}}_{{\mathrm{y}}_{\mathrm{i}}}\end{array}\\ \begin{array}{c}{-\mathrm{n}}_{{\mathrm{x}}_{\mathrm{i}}}\\ 0\end{array}\end{array}\end{array}\end{array}\right]\left[\begin{array}{c}\begin{array}{c}{\mathrm{q}}_{0}\\ {\mathrm{q}}_{1}\end{array}\\ \begin{array}{c}{\mathrm{q}}_{2}\\ {\mathrm{q}}_{3}\end{array}\end{array}\right]$$
(A5)

The inner product \(\langle \widehat{\mathrm{q}}, \left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}\mathrm{q}\right)\rangle\) can be written as the product of matrices, as follows:

$${\widehat{\mathrm{Q}}}^{\mathrm{T}}\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\mathrm{Q}={\mathrm{Q}}^{\mathrm{T}}{\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]}^{\mathrm{T}}\widehat{\mathrm{Q}}$$
(A6)

Rewritten \(\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)\langle \widehat{\mathrm{q}}, \left({\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}\mathrm{q}\right)\rangle\) as product of matrices, we have:

$$\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right){\widehat{\mathrm{Q}}}^{\mathrm{T}}\left(\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\mathrm{Q}\right)={\widehat{\mathrm{Q}}}^{\mathrm{T}}\left(\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\right)\mathrm{Q}$$
(A7)

Thus, the sum is equal to the product of matrices:

$$\begin{array}{c}\mathrm{E}=\mathrm{c}+4{\sum }_{\mathrm{i}=1}^{\mathrm{n}}{\left({\widehat{\mathrm{Q}}}^{\mathrm{T}}\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\mathrm{Q}\right)}^{2}\\ +4{\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left({\widehat{\mathrm{Q}}}^{\mathrm{T}}\left(\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\right)\mathrm{Q }\right)=\\ \begin{array}{c}=\mathrm{c}+4{\widehat{\mathrm{Q}}}^{\mathrm{T}}\left({\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left(\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]{\mathrm{QQ}}^{\mathrm{T}}{\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]}^{\mathrm{T}}\right)\right)\widehat{\mathrm{Q}}\\ +4{\widehat{\mathrm{Q}}}^{\mathrm{T}}\left({\sum }_{\mathrm{i}=1}^{\mathrm{n}}\left(\left({\mathrm{d}}_{\mathrm{i}}^{\mathrm{r}}-{\mathrm{d}}_{\mathrm{i}}^{\mathrm{p}}\right)\left[{\mathrm{L}}_{{\overrightarrow{\mathrm{n}}}_{\mathrm{i}}^{\mathrm{r}}}\right]\right)\right)\mathrm{Q}=\\ =\mathrm{c}+4{\widehat{\mathrm{Q}}}^{\mathrm{T}}{\mathrm{W}}_{4}\widehat{\mathrm{Q}}+4{\widehat{\mathrm{Q}}}^{\mathrm{T}}{\mathrm{W}}_{5}\mathrm{Q}\end{array}\end{array}$$
(A8)

Then, in order to find \(\widehat{\mathrm{Q}}\) the Eq. A8 should be minimized with the following constraint:

$$4{\widehat{\mathrm{Q}}}^{\mathrm{T}}\mathrm{Q}=0$$
(A9)

which can be solved using the Lagrange multipliers, as follows:

$$\widetilde{\mathrm{E}}=\mathrm{c}+2{\widehat{\mathrm{Q}}}^{\mathrm{T}}{\mathrm{W}}_{4}\widehat{\mathrm{Q}}+4{\widehat{\mathrm{Q}}}^{\mathrm{T}}{\mathrm{W}}_{5}\mathrm{Q}+4\uplambda {\widehat{\mathrm{Q}}}^{\mathrm{T}}\mathrm{Q}$$
(A10)

where \(\uplambda\) denotes the Lagrange multipliers. The partial derivative are:

$$\frac{\partial \widetilde{\mathrm{E}}}{\partial \widehat{\mathrm{Q}}}=4\left({\mathrm{W}}_{4}+{\mathrm{W}}_{4}^{\mathrm{T}}\right)\widehat{\mathrm{Q}}+4{\mathrm{W}}_{5}\mathrm{Q}+4\mathrm{\lambda Q}=0$$
(A11)

The two beforementioned equations are equal to the following linear system:

$$\left\{\begin{array}{c}4\left({\mathrm{W}}_{4}+{\mathrm{W}}_{4}^{\mathrm{T}}\right)\widehat{\mathrm{Q}}+4{\mathrm{W}}_{5}Q+4\lambda Q=0\\ 4{\widehat{\mathrm{Q}}}^{\mathrm{T}}Q=0\end{array}\right.$$
(A12)

As \({\mathrm{W}}_{4}\) is a symmetric matrix, we have:

$$\left\{\begin{array}{c}\left({2\mathrm{W}}_{4}\right)\widehat{\mathrm{Q}}+Q\lambda =-{\mathrm{W}}_{5}Q\\ {\mathrm{Q}}^{\mathrm{T}}\widehat{\mathrm{Q}}=0\end{array}\right.$$
(A13)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, E.M., dos Santos, D.R. Closed-form solution to point- and plane-based co-registration of terrestrial LiDAR point clouds. Appl Geomat 15, 421–439 (2023). https://doi.org/10.1007/s12518-023-00498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-023-00498-8

Keywords

Navigation