Skip to main content
Log in

Unsupervised mapping of a hybrid urban area in South Africa

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Hybrid urban areas are dominated by important spectral mixtures from formal and informal housing units which make them difficult to map even for the most robust classifier. Proposals to introduce other descriptive features, such as size, shape, texture, and context into the classification process, come with another drawback which is how to ensure the selected feature thresholds are optimal. Image segmentation which is the backbone of object-based analysis depends on a range of parameters including scale parameter, shape, smoothness, colour, and compactness weighting factors. Current techniques to select optimal segmentation scales only give the remote sensing analyst control over one parameter out of five (20%). This study proposes a classification strategy that gives the analyst control of 60% of the parameters to ensure an acceptable segmentation outcome. The study also proposes a feature selection approach that eliminates feature overlaps within the feature space which may not be observable within the original data. An automatic optimal parameter selection function is also proposed in this study. Tested on a SPOT5 resolution merge image, the approach overpowered the accuracy metrics of (Kemper et al.in Int Arch Photogramm Remote Sens Spat Inform Sci 40(7): 1389, 2015) with overall, sensitivity, specificity, precision, true skill statistic accuracies of respectively 0.97, 0.96, 1, 0.942, 0.95 against 0.97, 0.804, 0.98, 0.477, and 0.781. Similar trends are observed with the smallest average error of omission for built-up and non-built structures at 0.042 and 0 against to 0.196 and 0.164. The errors of commission for built-up and non-built-up structures were 0.060 and 0.008 respectively compared to 0.523 and 0.585.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used in this study has been legally acquired free of charges for research purposes only.

Code availability

The provided piece of code for radiometric correction can be used by anyone who has interest in it.

References

  • Abbas AW, Minallh N, Ahmad N, Abid SAR, Khan MAA (2016) K-Means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh Univ Res J-SURJ (Science Series) 48(2)

  • Ateşoğlu A, Tunay M (2014) Evalauting digital elevation models in the atmospheric correction procedure for different satellite image data (Bartin case study, Turkey)

  • Baboo SS, Devi MR (2010) An analysis of different resampling methods in Coimbatore, District. Glob J Comput Sci Technol

  • Barow I, Megenta M, Megento T (2019) Spatiotemporal analysis of urban expansion using GIS and remote sensing in Jigjiga town of Ethiopia. Appl Geomatics 11(2):121–127

    Article  Google Scholar 

  • Ben-Dor E, Levin N, Saaroni H (2001) A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4-1.1 µm). A case study over Tel-Aviv, Israel. Int J Remote Sens 22(11):2193–2218

    Google Scholar 

  • Boakye E, Anyemedu FOK, Quaye-Ballard JA, Donkor EA (2020) Spatio-temporal analysis of land use/cover changes in the Pra River Basin Ghana. Appl Geomatics 12(1):83–93

    Article  Google Scholar 

  • Brian B (2016) Temporal and spatial patterns of urban sprawl and their implications on environmental planning in Mbarara Municipality. Appl Geomatics 8(3–4):201–216

    Article  Google Scholar 

  • Busgeeth K, Brits A, Whisken JB (2008) Potential application of remote sensing in monitoring informal settlements in developing countries where complimentary data does not exist

  • Campbell J (2006) Introduction to remote sensing, 7th edn. Taylor & Francis, London

    Google Scholar 

  • Chen L, Zhao S, Han W, Li Y (2012) Building detection in an urban area using lidar data and QuickBird imagery. Int J Remote Sens 33(16):5135–5148

    Article  Google Scholar 

  • Costa GAOP, Feitosa RQ, Cazes TB, Feijó B (2008) Genetic adaptation of segmentation parameters. In Object-based image analysis. Springer, Berlin, pp. 679–695

  • Cushion EJ, Warmenhoven J, North J, Cleather DJ (2019) Principal component Analysis reveals the approximate to distal pattern in vertical jumping is governed by two functional degrees of freedom. Front Bioeng Biotechnol 7:193

    Article  Google Scholar 

  • Daszykowski M, Kaczmarek K, Vander Heyden Y, Walczak B (2007) Robust statistics in data analysis—A review: Basic concepts. Chemometr Intell Lab Syst 85(2):203–219

    Article  Google Scholar 

  • Debbage N, Bereitschaft B, Shepherd JM (2017) Quantifying the spatiotemporal trends of urban sprawl among large US metropolitan areas via spatial metrics. Appl Spat Anal Policy 10(3):317–345

    Article  Google Scholar 

  • Definiens AG (2007) eCognition user guide. http://www.DefiniensCom/index.php. Accessed 23 May 2020

  • Degerickx J, Okujeni A, Iordache MD, Hermy M, van der Linden S, Somers B (2017) A novel spectral library pruning technique for spectral unmixing of urban land cover. Remote Sens 9(6):565

    Article  Google Scholar 

  • De Jong, Van Der Meer FD (2005) Remote Sensing Image Analysis: Including the spatial domain, vol 5. Kluwer Academic Publishers, New York

  • Du Plessis DJ (2015) Land-use mix in South African cities and the influence of spatial planning: Innovation or following the trend? S Afr Geogr J 97(3):217–242

    Article  Google Scholar 

  • Dutta I, Das A (2019) Exploring the dynamics of urban sprawl using geo-spatial indices: A study of English Bazar Urban Agglomeration West Bengal. Appl Geomatics 11(3):259–276

    Article  Google Scholar 

  • Espindola GM, Camara G, Reis IA, Bins LS, Montero AM (2006) Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int J Remote Sens 27(14):3035–3040

    Article  Google Scholar 

  • Fundisi E, Musakwa W (2017) Built-up area and land cover extraction using high resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa. Int Arch Photogramm Remote Sens Spatial Inform Sci 42

  • Gandhi GM, Parthiban S, Thummalu N, Christy A (2015) Ndvi: Vegetation change detection using remote sensing and gis–A case study of Vellore District. Procedia Comput Sci 57:1199–1210

    Article  Google Scholar 

  • Gewers FL, Ferreira GR, de Arruda HF, Silva FN, Comin CH, Amancio DR, Costa LDF (2018) Principal component analysis: a natural approach to data exploration. arXiv preprint arXiv:1804.02502

  • Ghassemian H (2016) A review of remote sensing image fusion methods. Inform Fusion 32:75–89

    Article  Google Scholar 

  • Granato D, Santos JS, Escher GB, Ferreira BL, Maggio RM (2018) Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci Technol 72:83–90

    Article  Google Scholar 

  • Gxumisa A, Breytenbach A (2017) Evaluating pixel vs. segmentation based classifiers with height differentiation on SPOT 6 imagery for urban land cover mapping. S Afr J Geomatics 6(3):436–448

    Article  Google Scholar 

  • Happ C, Greven S (2018) Multivariate functional principal component analysis for data observed on different (dimensional) domains. J Am Stat Assoc 113(522):649–659

    Article  Google Scholar 

  • Hashim H, Abd Latif Z, Adnan NA (2019) Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) PLEIADES Imagery. Int Arch Photogramm Remote Sens Spat Inf Sci, 237–240

  • Heiden U, Roessner S, Segl K, Kaufmann H (2001) Analysis of spectral signatures of urban surfaces for their identification using hyperspectral HyMap data. In IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (Cat. No. 01EX482) (pp. 173–177). IEEE

  • Hernandez W, Mendez A, Göksel T (2018) Application of principal component analysis to image compression. In STATISTICS (pp. 107–137). InTechOpe

  • Herold M, Clarke KC, Scepan J (2002) Remote sensing and landscape metrics to describe structures and changes in urban land use. Environ Plan A 34(8):1443–1458

    Article  Google Scholar 

  • Herold M, Gardner ME, Roberts DA (2003) Spectral resolution requirements for mapping urban areas. IEEE Trans Geosci Remote Sens 41(9):1907–1919

    Article  Google Scholar 

  • Herold M, Roberts DA, Gardner ME, Dennison PE (2004) Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91(3):304–319

    Article  Google Scholar 

  • Hoque I, Lepcha SK (2020) A geospatial analysis of land use dynamics and its impact on land surface temperature in Siliguri Jalpaiguri development region West Bengal. Appl Geomatics 12(2):163–178

    Article  Google Scholar 

  • Jilge M, Heiden U, Habermeyer M, Mende A, Juergens C (2016) Identifying pure urban image spectra using a learning urban image spectral archive (LUISA). In Remote Sensing Technologies and Applications in Urban Environments (Vol. 10008, p. 100080J). International Society for Optics and Photonics

  • Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Phil Trans R Soc A Math Phys Eng Sci 374(2065):20150202

    Article  Google Scholar 

  • Kemper T, Mudau N, Mangara P, Pesaresi M (2015) Towards an automated monitoring of human settlements in South Africa using high-resolution SPOT satellite imagery. Int Arch Photogramm Remote Sens Spat Inform Sci 40(7):1389

    Article  Google Scholar 

  • Kim M, Madden M, Warner T (2008) Estimation of optimal image object size for the segmentation of forest stands with Multi-spectral IKONOS imagery. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis concepts for knowledge driven remote sensing applications. Berlin, 2008, pp 291–307, Springer, Berlin, 2008

  • Kohli D, Sliuzas R, Stein A (2016) Urban slum detection using texture and spatial metrics derived from satellite imagery. J Spat Sci 61(2):405–426

    Article  Google Scholar 

  • Kuffer M, Barrosb J (2011) Urban morphology of unplanned settlements: The use of spatial metrics in VHR remotely sensed images. Procedia Environ Sci 7:152–157

    Article  Google Scholar 

  • Kuffer M, Pfeffer K, Sliuzas R, Baud I, Maarseveen M (2017) Capturing the diversity of deprived areas with image-based features: The case of Mumbai. Remote Sens 9(4):384

    Article  Google Scholar 

  • Lever J, Krzywinski M, Altman N (2017) Points of significance: Principal component analysis

  • Lhissou R, El Harti A, Maimouni S, Adiri Z (2020) Assessment of the image-based atmospheric correction of multispectral satellite images for geological mapping in arid and semi-arid regions. Remote Sens Appl Soc Environ 20:100420

  • López–Bueno D, Pham QA, Montoro G, Gilabert PL (2018) Independent digital predistortion parameters estimation using adaptive principal component analysis. IEEE Trans Microwave Theory Tech 66(12):5771–5779

    Article  Google Scholar 

  • López-Serrano PM, Corral-Rivas JJ, Díaz-Varela RA, Álvarez-González JG, López-Sánchez CA (2016) Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sens 8(5):369

    Article  Google Scholar 

  • Manakos I, Schneider T, Ammer U (2000) A comparison between the ISODATA and the eCognition classification methods on basis of field data. APRS 33(Suppl. B7):133–139

    Google Scholar 

  • Mather PM (2004) Computer Processing of remotely-sensed Images. Wiley, West Sussex

    Google Scholar 

  • Mather P, Tso B (2016) Classification methods for remotely sensed data. CRC Press

    Book  Google Scholar 

  • Mehra I, Nishchal NK (2014) Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Opt Express 22(5):5474–5482

    Article  Google Scholar 

  • Meng X, Wang L, Currit N (2009) Morphology-based building detection from airborne LIDAR data. Photogramm Eng Remote Sens 75(4):437–442

    Article  Google Scholar 

  • Miky YH (2019) Remote sensing analysis for surface urban heat island detection over Jeddah Saudi Arabia. Appl Geomatics 11(3):243–258

    Article  Google Scholar 

  • Meyer HP, Niekerk A (2016) Assessing edge and area metrics for image segmentation parameter tuning and evaluation

  • MohanRajan SN, Loganathan A, Manoharan P (2020) Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environmental Science and Pollution Research International

  • NCAVEO (2005) Network for Calibration and Validation of Earth Observation data School of Geography, University of Southampton SO17 1BJ, UK

  • Ng SC (2017) Principal Component Analysis to reduce dimension on digital image. Procedia Comput Sci 111:113–119

    Article  Google Scholar 

  • Novack T, Kux HJH (2010) Urban land cover and land use classification of an informal settlement area using the open-source knowledge-based system InterIMAGE. Health Risk Soc 55(1):23–41

    Google Scholar 

  • Odindi J, Mhangara P, Kakembo V (2012) Remote sensing land-cover change in Port Elizabeth during South Africa’s democratic transition. S Afr J Sci 108(5–6):60–66

    Google Scholar 

  • Ouerghemmi W, Gadal S, Mozgeris G, Jonikavičius D, Weber C (2017) Urban objects classification by spectral library: Feasibility and applications. In: 2017 Joint Urban Remote Sensing Event (JURSE). IEEE, pp 1–4

  • Pohl C, Van Genderen J (2016) Remote sensing image fusion: A practical guide. Crc Press

  • Rani N, Mandla VR, Singh T (2017) Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping. Geosci Front 8(4):797–808

    Article  Google Scholar 

  • Reigber A, Jager M, He W, Ferro-Famil L, Hellwich O (2007) Detection and classification of urban structures based on high-resolution SAR imagery. In: 2007 Urban Remote Sensing Joint Event (pp. 1–6). IEEE

  • Richter R, Center RSD (2004) ATCOR: Atmospheric and topographic correction. German Aerospace Center, Mars: Oberpfaffenhofen, Germany

  • Rocchini D, Di Rita A (2005) Relief effects on aerial photos geometric correction. Appl Geogr 25(2):159–168

    Article  Google Scholar 

  • Shamshad A, Hussin WMAW, Sanusi M (2004) International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2004

  • Simone G, Farina A, Morabito FC, Serpico SB, Bruzzone L (2002) Image fusion techniques for remote sensing applications. Inform Fusion 3(1):3–15

    Article  Google Scholar 

  • Singh K, Malik D, Sharma N (2011) Evolving limitations in K-means algorithm in data mining and their removal. Int J Comput Eng Manag 12:105–109

    Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenny MP, Macomber SA (2001) Classification and Change detection using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sens Environ 75:230–244

    Article  Google Scholar 

  • Sowmya DR, Shenoy PD, Venugopal KR (2017) Remote sensing satellite image processing techniques for image classification: a comprehensive survey. Int J Comput Appl 161(11):24–37

    Google Scholar 

  • Steiniger S, Lange T, Burghardt D, Weibel R (2008) An approach for the classification of urban building structures based on discriminant analysis techniques. Trans GIS 12(1):31–59

    Article  Google Scholar 

  • Tan KC, San Lim H, MatJafri MZ, Abdullah K (2012) A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery. Environ Monit Assess 184(6):3813–3829

    Article  Google Scholar 

  • Van der Linden S, Okujeni A, Canters F, Degerickx J, Heiden U, Hostert P, Priem F, Somers B, Thiel F (2019) Imaging spectroscopy of urban environments. Surv Geophys 40(3):471–488

    Article  Google Scholar 

  • Wang Y, Qi Q, Liu Y, Jiang L, Wang J (2019) Unsupervised segmentation parameter selection using local spatial statistics for remote sensing image segmentation. Int Appl Earth Observ Geoformation 81:98–109

    Article  Google Scholar 

  • Weng Q, Quattrochi DA eds (2006) Urban remote sensing. CRC press

  • Yang L, Mansaray LR, Huang J, Wang L (2019) Optimal Segmentation Scale Parameter, Feature Subset and Classification Algorithm for Geographic Object-Based Crop Recognition Using Multisource Satellite Imagery. Remote Sens 11(5):514

    Article  Google Scholar 

  • Ye S, Pontius RG Jr, Rakshit R (2018) A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J Photogramm Remote Sens 141:137–147

    Article  Google Scholar 

  • Zhu W, Zeng N, Wang N (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. NESUG proceedings: health care and life sciences, Baltimore, Maryland, 19, p. 67

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed 100% in the content of this paper.

Corresponding author

Correspondence to Guy Blanchard Ikokou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikokou, G.B., Smit, J. Unsupervised mapping of a hybrid urban area in South Africa. Appl Geomat 13, 619–643 (2021). https://doi.org/10.1007/s12518-021-00379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-021-00379-y

Keywords

Navigation