Skip to main content

Advertisement

Log in

Local-scale accuracy assessment of vegetation cover change maps derived from Global Forest Change data, ClasLite, and supervised classifications: case study at part of Riau Province, Indonesia

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Massive deforestation in Indonesia drives the need for proper monitoring using appropriate technology and method. The continuing mission of Landsat sensor extends the observation to almost 30 years back, initiating the ability to monitor the dynamics of vegetation intensively. By taking the advantage of the Landsat archive, advanced semi-automatic classification method, namely ClasLite developed by Asner et al. (J Appl Remote Sens 3:33543–33543, 2009) and a new end-product of 30 m Global Forest Cover Change cover (GFC) datasets developed by (Hansen et al. in Science 342:850–853, 2013a), offered the ability to easily monitor deforestation and forest degradation with little or few knowledge of mapping. This study aims to assess the performance of these newly available products of GFC and the ClasLite method against the traditional pixel-based supervised classification of minimum distance to mean (MD), maximum likelihood (ML), spectral angle mapper (SAM), and random forest (RF). Visual image interpretation of pan-sharpened Landsat was carried out to measure the accuracy of each final map. Result demonstrated that GFC and CLaslite performance has 3 to 18% higher overall accuracy for mapping vegetation cover change compared with the conventional supervised analysis using MD, ML, SAM, and RF with ClasLite as the most accurate method with 78.14 ± 2%. Further adjustment of the cover change map of GFC by using forest extent from ClasLite was able to increase the accuracy of the original GFC data by 10%. Therefore, GFC and ClasLite ensure the ability to monitor vegetation cover change accurately in a simple manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asner GP, Knapp DE, Balaji A, Paez-Acosta G (2009) Automated mapping of tropical deforestation and forest degradation: CLASlite. J Appl Remote Sens 3:33543–33543. https://doi.org/10.1117/1.3223675

    Article  Google Scholar 

  • Baker DJ, Richards G, Grainger A, Gonzalez P, Brown S, DeFries R, Held A, Kellndorfer J, Ndunda P, Ojima D, Skrovseth PE, Souza C Jr, Stolle F (2010) Achieving forest carbon information with higher certainty: a five-part plan. Environ Sci Policy 13:249–260. https://doi.org/10.1016/j.envsci.2010.03.004

    Article  Google Scholar 

  • Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F, Zambrano AMA, Aide TM, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Craven D, Almeida-Cortez JS, Cabral GAL, de Jong B, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Duran SM, Espirito-Santo MM, Fandino MC, Cesar RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Lohbeck M, Martinez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Munoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Orihuela-Belmonte E, Pena-Claros M, Perez-Garcia EA, Piotto D, Powers JS, Rodriguez-Velazquez J, Romero-Perez IE, Ruiz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Uriarte M, van Breugel M, van der Wal H, Veloso MDM, Vester H, Vieira ICG, Bentos TV, Williamson GB, Poorter L (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2:e1501639–e1501639. https://doi.org/10.1126/sciadv.1501639

    Article  Google Scholar 

  • Chowdhury RR (2006) Driving forces of tropical deforestation: the role of remote sensing and spatial models. Singap J Trop Geogr 27:82–101. https://doi.org/10.1111/j.1467-9493.2006.00241.x

    Article  Google Scholar 

  • Congedo L (2015) Semi-automatic classification plugin. Documentation:106–106. https://doi.org/10.13140/RG.2.1.2137.4884

  • Desclée B, Bogaert P, Defourny P (2006) Forest change detection by statistical object-based method. Remote Sens Environ 102:1–11. https://doi.org/10.1016/j.rse.2006.01.013

    Article  Google Scholar 

  • Dlamini WM (2017) Mapping forest and woodland loss in Swaziland: 1990–2015. RSASE 5:45–53. https://doi.org/10.1016/j.rsase.2017.01.004

    Google Scholar 

  • Duveiller G, Defourny P, Desclée B, Mayaux P (2008) Deforestation in Central Africa: estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens Environ 112:1969–1981. https://doi.org/10.1016/j.rse.2007.07.026

    Article  Google Scholar 

  • Grinand C, Rakotomalala F, Gond V, Vaudry R, Bernoux M, Vieilledent G (2013) Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sens Environ 139:68–80. https://doi.org/10.1016/j.rse.2013.07.008

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013a) High-resolution global maps of 21st-century forest cover change. Science 342:850–853 Accessed through Global Forest Watch on [date]. www.globalforestwatch.org

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013b) Supplementary materials: high-resolution global maps of 21st-century forest cover change. Science 342:850–853 Accessed through Global Forest Watch on [date]. www.globalforestwatch.org

    Article  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Chang Biol 11:945–958. https://doi.org/10.1111/j.1365-2486.2005.00955.x

    Article  Google Scholar 

  • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106. https://doi.org/10.1016/j.isprsjprs.2013.03.006

    Article  Google Scholar 

  • Irons JR, Dwyer JL, Barsi JA (2012) The next Landsat satellite: the Landsat data continuity mission. Remote Sens Environ 122:11–21. https://doi.org/10.1016/j.rse.2011.08.026

    Article  Google Scholar 

  • Kinnaird MF, Sanderson EW, O'Brien TG, Wibisono HT, Woolmer G (2003) Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv Biol 17:245–257. https://doi.org/10.1046/j.1523-1739.2003.02040.x

    Article  Google Scholar 

  • Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2401. https://doi.org/10.1080/0143116031000139863

    Article  Google Scholar 

  • Lui GV, Coomes DA (2015) A comparison of novel optical remote sensing-based technologies for forest-cover/change monitoring. Remote Sens 7:2781–2807. https://doi.org/10.3390/rs70302781

    Article  Google Scholar 

  • Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC (2014) Primary forest cover loss in Indonesia over 2000-2012. Nat Clim Chang 4:730–735

    Article  Google Scholar 

  • Nangendo G, Skidmore AK, van Oosten H (2007) Mapping East African tropical forests and woodlands—a comparison of classifiers. ISPRS J Photogramm Remote Sens 61:393–404. https://doi.org/10.1016/j.isprsjprs.2006.11.003

    Article  Google Scholar 

  • Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129:122–131. https://doi.org/10.1016/j.rse.2012.10.031

    Article  Google Scholar 

  • Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12:S27–S31. https://doi.org/10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  • Potter L, Badcock S (2001) The effect of Indonesia’s decentralisation on forests and estate crops: case study of Riau Province, the original districts of Kampar and Indragiri Hulu. In, vol 16. pp 2001–2001

  • Qin Y, Xiao X, Dong J, Zhang G, Roy PS, Joshi PK, Gilani H, Murthy MSR, Jin C, Wang J, Zhang Y, Chen B, Menarguez MA, Biradar CM, Bajgain R, Li X, Dai S, Hou Y, Xin F, Moore III B (2016) Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Sci Rep 6:20880–20880. https://doi.org/10.1038/srep20880

    Article  Google Scholar 

  • Ramankutty N, Gibbs HK, Achard F, Defries R, Foley JA, Houghton RA (2007) Challenges to estimating carbon emissions from tropical deforestation. Glob Chang Biol 13:51–66. https://doi.org/10.1111/j.1365-2486.2006.01272.x

    Article  Google Scholar 

  • Roy DP, Wulder MA, Loveland TR, C.E. W, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  • Sannier C, McRoberts RE, Fichet L-V (2016) Suitability of Global Forest Change data to report forest cover estimates at national level in Gabon. Remote Sens Environ 173:326–338

    Article  Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660. https://doi.org/10.1016/j.tree.2004.09.006

    Article  Google Scholar 

  • Tropek R, Sedláček O, Beck J, Keil P, Musilová Z, Šímová I, Storch D (2014) Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344:981

    Article  Google Scholar 

  • USGS (2016) Landsat 8 (L8) Data Users Handbook vol 8

  • van der Linden S, Rabe A, Held M, Jakimow B, Leitão P, Okujeni A, Schwieder M, Suess S, Hostert P (2015) The EnMAP-box-A toolbox and application programming interface for EnMAP data processing. Remote Sens 7:11249–11266. https://doi.org/10.3390/rs70911249

    Article  Google Scholar 

  • Wu W, Shao G (2002) Optimal combinations of data, classifiers, and sampling methods for accurate characterizations of deforestation. Can J Remote Sens 28:601–609. https://doi.org/10.5589/m02-050

    Article  Google Scholar 

  • WWF (2008) How pulp & paper and palm oil from Sumatra increase global climate change and drive tigers and elephants to local extinction

Download references

Acknowledgements

The authors would like to thank NASA for providing the free Landsat Data online and the Carnegie Institution of Washington for providing the ClasLite software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiwana Arjasakusuma.

Electronic supplementary material

ESM 1

(DOCX 18.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjasakusuma, S., Kamal, M., Hafizt, M. et al. Local-scale accuracy assessment of vegetation cover change maps derived from Global Forest Change data, ClasLite, and supervised classifications: case study at part of Riau Province, Indonesia. Appl Geomat 10, 205–217 (2018). https://doi.org/10.1007/s12518-018-0226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-018-0226-2

Keywords

Navigation