Skip to main content
Log in

Assessment of the impact of Landsat 7 Scan Line Corrector data gaps on Sungai Pulai Estuary seagrass mapping

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The data gaps in the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Scan Line Corrector (SLC)-off imagery as a result of SLC failure are well recognized. The degradation introduced by their use in scientific applications is concerning to Landsat users. SLC-off data gaps cause problems in many applications of ETM+ images, but no literature reported the problem in seagrass mapping. To investigate the impact of SLC-off data loss on the seagrass information extraction, two types of data were compared: (a) data with interpolation after the SLC anomaly, termed the “Interpolation ON (ION)”, and (b) the data without interpolation, termed the “Interpolation OFF (IOFF)” image, for the Sungai Pulai estuary seagrass meadows of Malaysia. Additionally, the random shifting of SLC-off stripes was tested by swipe analysis of SLC-off image pairs. Overall, the SLC-off scene analysis suggests that a gradual increase of data gaps from the central part toward the edge may cause a cumulative error of 2 % based on an object’s distance from the nadir path. The random shifting of SLC-off stripes may be completely invisible if a single SLC-off stripe passes over a targeted small seagrass meadow such as the Tanjung Adang Laut shoal, which has a spatial extent of 11.07 ha. The data gaps eventually lead to misinterpretations and produce erroneous seagrass distribution maps. The co-existence of SLC-off stripes and their random shifting phenomenon have caused non-overlapping regions between SLC-off scenes acquired on different dates. Future research should develop suitable methods for gap-filling and resolve aquatic remote sensing mapping issues by using knowledge from the present research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Annaletchumy L, Bujang JS, Zakaria MH, Arshad A (2005) Morphology of Halophila ovalis (R.Br.) Hook. f. from peninsular and east Malaysia. Pertanika J Trop Agri Sci 28:1–11

    Google Scholar 

  • Arvidson T, Goward S, Gasch J, Williams D (2006) Landsat-7 long-term acquisition plan: development and validation. Photogramm Eng Remote Sens 72:1137–1146

    Article  Google Scholar 

  • Bédard F, Reichert G, Dobbins R, Trépanier I (2008) Evaluation of segment-based gap-filled Landsat ETM+ SLC-off satellite data for land cover classification in southern Saskatchewan. Canada Int J Remote Sensing 29:2041–2054. doi:10.1080/01431160701281064

    Article  Google Scholar 

  • Bujang JS, Zakaria MH (2011) Seagrasses in Malaysia. In: Ogawa H, Bujang JS, Zakaria MH (eds) Seagrasses: resource status and trends in Indonesia, Japan, Malaysia, Thailand and Vietnam. Seizando-Shoten, Tokyo

    Google Scholar 

  • Bujang JS, Zakaria MH, Arshad A (2006) Distribution and significance of seagrass ecosystems in Malaysia. Aquat Ecosyst Health Manage 9:203–214. doi:10.1080/14634980600705576

    Article  Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903. doi:10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  • Chen J, Zhu X, Vogelmann JE, Gao F, Jin S (2011) A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens Environ 115:1053–1064. doi:10.1016/j.rse.2010.12.010

    Article  Google Scholar 

  • Cob ZC, Arshad A, Bujang JS, Ghaffar MA (2009) Species description and distribution of Strombus (Mollusca: Strombidae) in Johor Straits and its surrounding areas. Sains Malaysiana 38:39–46

    Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19:183–204. doi:http://dx.doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

  • ENVI (2009) ENVI EX user’s guide. http://www.exelisvis.com/portals/0/pdfs/enviex/ENVI_EX_User_Guide.pdf. Accessed 25 June 2015.

  • Gullström M, Lundén B, Bodin M, Kangwe J, Öhman MC, Mtolera MSP et al (2006) Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar Coast Shelf Sci 67:399–408. doi:10.1016/j.ecss.2005.11.020

    Article  Google Scholar 

  • Hossain MS, Bujang JS, Zakaria MH (2015a) Landsat image enhancement techniques for subtidal and intertidal seagrass detection and distribution mapping in the coastal waters of Sungai Pulai estuary, Malaysia. Coastal Marine Science 38:1–15

    Google Scholar 

  • Hossain MS, Bujang JS, Zakaria MH, Hashim M (2015b) The application of remote sensing to seagrass ecosystems: an overview and future research prospects. Int J Remote Sens 3:61–113. doi:10.1080/01431161.2014.990649

    Article  Google Scholar 

  • Jensen JR (1986) Introductory digital image processing. Prentice-Hall, New Jersey

    Google Scholar 

  • Knudby A, Newman C, Shaghude Y, Muhando C (2010) Simple and effective monitoring of historic changes in nearshore environments using the free archive of landsat imagery. Int J Appl Earth Obs Geoinf 12:S116–S122. doi:10.1016/j.jag.2009.09.002

    Article  Google Scholar 

  • Laben CA, Bernard V, Brower W (2000) Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. US Patent No. 6011875, 2000

  • Lathrop RG, Montesano P, Haag S (2006) A multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogramm Eng Remote Sens 72:665–675

    Article  Google Scholar 

  • Lauer M, Aswani S (2008) Integrating indigenous ecological knowledge and multi-spectral image classification for marine habitat mapping in oceania. Ocean Coast Manage 51:495–504. doi:10.1016/j.ocecoaman.2008.04.006

    Article  Google Scholar 

  • Lyons MB, Phinn SR, Roelfsema CM (2012) Long term land cover and seagrass mapping using landsat and object-based image analysis from 1972 to 2010 in the coastal environment of south east Queensland, Australia. ISPRS J Photogramm Remote Sens 71:34–46. doi:10.1016/j.isprsjprs.2012.05.002

    Article  Google Scholar 

  • Lyons MB, Roelfsema CM, Phinn SR (2013) Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing. Estuar Coast Shelf Sci 120:42–53. doi:10.1016/j.ecss.2013.01.015

    Article  Google Scholar 

  • Maxwell SK (2004) Filling Landsat ETM+ SLC-off gaps using a segmentation model approach. Photogramm Eng Remote Sens 70:1109–1111

    Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ, Clark CD (1997) Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Mar Ecol Prog Ser 159:51–60

    Article  Google Scholar 

  • Roelfsema CM, Lyons M, Kovacs EM, Maxwell P, Saunders MI, Samper-Villarreal J et al (2014) Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sens Environ 150:172–187. doi:10.1016/j.rse.2014.05.001

    Article  Google Scholar 

  • Rulloni V, Bustos O, Flesia AG (2012) Large gap imputation in remote sensed imagery of the environment. Comput Stat Data Anal 56:2388–2403

    Article  Google Scholar 

  • Sagawa T, Boisnier E, Komatsu T, Mustapha KB, Hattour A, Kosaka N et al (2010) Using bottom surface reflectance to map coastal marine areas: a new application method for Lyzenga's model. Int J Remote Sens 31:3051–3064. doi:10.1080/01431160903154341

    Article  Google Scholar 

  • Sleeman JC, Kendrick GA, Boggs GS, Hegge BJ (2005) Measuring fragmentation of seagrass landscapes: which indices are most appropriate for detecting change? Marine and Freshwater Research 56:851–864. doi:http://dx.doi.org/10.1071/MF04300.

  • Song M, Civco, DL (2002) A knowledge-based approach for reducing cloud and shadow. Proceedings of the 2002 ASPRS Annual Conference and FIG XXII Congress. http://clear.uconn.edu/%5C/publications/research/tech_papers/Song_Civco_ASPRS2002.pdf. Accessed 02 September 2014

  • Storey J, Scaramuzza P, Schmidt G, Barsi J (2005) Landsat 7 scan line corrector-off gap-filled product development. In: Pecora 16 Global Priorities in Land Remote Sensing, Sioux Falls, South Dakota. http://www.asprs.org/a/publications/proceedings/pecora16/Storey_J.pdf Accessed 31 August 2014

  • Torres-Pulliza D, Wilson JR, Darmawan A, Campbell SJ, Andréfouët S (2013) Ecoregional scale seagrass mapping: a tool to support resilient MPA network design in the coral triangle. Ocean Coast Manage 80:55–64. doi:10.1016/j.ocecoaman.2013.04.005

    Article  Google Scholar 

  • Trigg S, Curran LM, McDonald AK (2006) Utility of landsat 7 satellite data for continued monitoring of forest cover change in protected areas in Southeast Asia. Singap J Trop Geogr 27:49–66. doi:10.1111/j.1467-9493.2006.00239.x

    Article  Google Scholar 

  • USGS (2003) Preliminary assessment of the value of Landsat 7 ETM+ data following scan line corrector malfunction. http://landsathandbook.gsfc.nasa.gov/pdfs/SLC_off_Scientific_Usability.pdf . Accessed 9 June 2014

  • USGS (2004) Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology. https://landsat.usgs.gov/documents/L7SLCGapFilledMethod.pdf. Accessed 9 June 2014

  • USGS (2006) Landsat 7 (L7) Image Assessment System (IAS) Geometric Algorithm Theoretical Basis Document (ATDB). http://landsathandbook.gsfc.nasa.gov/pdfs/L7_geometry_ATBD.pdf. Accessed 9 June 2014

  • USGS (2010) SLC-Off products: background. http://landsat.usgs.gov/products_slcoffbackground.php. Accessed 9 June 2014

  • USGS (2014) Landsat 5 suspension of operations extended. http://www.usgs.gov/newsroom/article.asp?ID=3109&from=rss#.U5XLdiiQJLU. Accessed 9 June 2014

  • Wabnitz CC, Andréfouët S, Torres-Pulliza D, Müller-Karger FE, Kramer PA (2008) Regional-scale seagrass habitat mapping in the wider Caribbean region using landsat sensors: applications to conservation and ecology. Remote Sens Environ 112:3455–3467. doi:10.1016/j.rse.2008.01.020

    Article  Google Scholar 

  • Wulder MA, Ortlepp SM, White JC, Maxwell S (2008) Evaluation of landsat-7 SLC-off image products for forest change detection. Can J Remote Sens 34:93–99

    Article  Google Scholar 

  • Zeng C, Shen H, Zhang L (2013) Recovering missing pixels for landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sens Environ 131:182–194

    Article  Google Scholar 

  • Zhao Y, Pu R, Bell SS, Meyer C, Baggett LP, Geng X (2013) Hyperion image optimization in coastal waters. IEEE Trans Geosci Remote Sens 51:1025–1036

    Article  Google Scholar 

  • Zhu X, Liu D, Chen J (2012a) A new geostatistical approach for filling gaps in landsat ETM+ SLC-off images. Remote Sens Environ 124:49–60

    Article  Google Scholar 

  • Zhu X, Feng G, Desheng L, Jin C (2012b) A modified neighborhood similar pixel interpolator approach for removing thick clouds in landsat images. IEEE Trans Geosci Remote Sens 9:521–525

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ScienceFund under Grant [project code: 04-01-04-SF1171] from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia. This research was also a collaboration with the Asian Core program of Japan Society for the Promotion of Science (JSPS) and Establishment of research and education network on Coastal Marine Science in South East Asia. The authors would like to thank the Editor and three anonymous reviewers, whose constructive comments and inputs significantly improved the article.

Conflict of interest

No potential conflict of interest was reported by the authors.

Authors’ contributions

None is provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shawkat Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Bujang, J.S., Zakaria, M.H. et al. Assessment of the impact of Landsat 7 Scan Line Corrector data gaps on Sungai Pulai Estuary seagrass mapping. Appl Geomat 7, 189–202 (2015). https://doi.org/10.1007/s12518-015-0162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-015-0162-3

Keywords

Navigation