Skip to main content

Advertisement

Log in

Shoreline change assessment using remote sensing and GIS techniques: a case study of the Medjerda delta coast, Tunisia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Eight scenes of Landsat Multispectral Scanner, Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager sensors, covering the period between 1972 and 2013, were used to demarcate shoreline positions and estimate shoreline change rates of the Medjerda delta coast, northeastern Tunisia. The method relies on image processing techniques using the IDRISI software, and the Digital Shoreline Analysis System, a free extension for ArcGIS software, which provides a set of tools permitting transects-based calculation of shoreline displacement. First, the Landsat images were radiometrically and geometrically corrected. Second, band ratioing, reclassification, raster to vector conversion, and smoothing techniques are applied successively to detect and extract the multi-temporal shoreline data. Third, these data are overlaid and the changes are calculated using the end points and linear regression methods. The results indicate significant shoreline changes ranging from 8.6 to −42.6 m/year, while some parts remained unchanged. The estimated shoreline change rates are comparable with those obtained through in situ measurements and from the analysis of multi-date aerial photos and toposheets. The main causes of erosion in particular are related to the natural shifting of the Medjerda River course and mouth, damming of Medjerda and its tributaries, construction of Ghar El Melh port, and the destruction of the small bordering dunes in addition to the wave-induced longshore currents, relative sea level rise due mainly to accelerated coastal subsidence, and sand mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aarninkhof SJ, Turner IL, Dronkers TDT, Caljouw M, Nipius L (2003) A video-based technique for mapping intertidal beach bathymetry. Coast Eng 49(4):275–289

    Article  Google Scholar 

  • Addo KA, Quashigah KS, Kufogbe KS (2011) Quantitative analysis of shoreline change using medium resolution satellite imagery in Keta, Ghana. Mar Sci 1(1):1–9

    Article  Google Scholar 

  • Al Fugura A, Billa L, Pradhan B (2011) Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image. Estuar Coast Shelf Sci 95:395–400

    Article  Google Scholar 

  • Alesheikh AA, Ghorbanali A, Nouri N (2007) Coastline change detection using remote sensing. Int J Environ Sci Technol 4(1):61–66

    Article  Google Scholar 

  • Al-Hatrushi S (2013) monitoring of the shoreline change using remote sensing and GIS: a case study of Al Hawasnah tidal Inlet, Al Batinah coast, Sultante of Oman. Arab J Geosci 6(5):1479–1484

    Article  Google Scholar 

  • Ayachi S (2004) Approche géomatique de l’évolution des zones humides et du trait de côte dans la région du complexe lagunaire de Ghar El Melh. Mémoire de DEA, Faculté des Lettres, des Arts et des Humanités de la Manouba, 128 p

  • Banque Mondiale (2011) Adaptation au changement climatique et aux désastres naturels des villes côtières d’Afrique du Nord. http://www.egis-bceominternational.com/pbm/

  • Bardi I, Abdeljaouad S, Souayed M (2011) Évolution du trait de côte de Gabès-Oued Ferd (SE de la Tunisie). Conférence Méditerranéenne Côtière et Maritime, Édition 2, Tanger, Maroc, 129–132

  • Ben Charrada R, Moussa M (1997) Modélisation hydrodynamique et écologique des eaux côtières du golfe de Tunis. La Houille Blanche 6:66–78

    Article  Google Scholar 

  • Ben Mammou A (1998) Barrages Nebeur, Sidi Salem, Sidi Saad et Sidi Boubaker. Quantification, étude sédimentologique et géotechniques des sédiments piégés. Apports des images satellitaires. Thèse de Doctorat en géologie, université de Tunis El Manar, Tunis, 345 p

  • Bouchahma M, Yan W (2013) Monitoring shoreline change on Djerba Island using GIS and multi-temporal satellite data. Arab J Geosci. doi:10.1007/s12517-013-1052-9

    Google Scholar 

  • Bouchahma M, Yan W, Ouessar M (2012) Island coastline change detection based on image processing and remote sensing. Comput Inf Sci 5(3):27–36

    Google Scholar 

  • Bouhafa T (1985) Érosion et protection des plages du Golfe de Tunis. Mémoire de DEA en géographie, Faculté des Sciences Humaines et Sociales de Tunis, Université de Tunis, 100 p

  • Bouraoui F, Benabdallah S, Jrad A, Bidoglio G (2005) Application of the SWAT model on the Medjerda river basin (Tunisia). Phys Chem Earth 30:497–507

    Article  Google Scholar 

  • Calafat FM, Gomis D (2009) Reconstruction of Mediterranean sea level fields for the period 1945–2000. Glob Planet Chang 66:225–234

    Article  Google Scholar 

  • Chand P, Acharya P (2010) Shoreline change and sea level rise along coast of Bhitarkanika wildlife sanctuary, Orissa: an analytical approach of remote sensing and statistical techniques. Int J Geomat Geosci 1(3):436–455

    Google Scholar 

  • Chavez PS Jr (1996) Image-based atmospheric corrections. Revisited and improved. ISPRS J Photogramm Eng Remote Sens 62:1025–1036

    Google Scholar 

  • Claude J, Francillon G, Loyer JY (1977) Les alluvions déposées par l’oued Medjerda lors de la crue exceptionnelle de mars 1973. DRES-ORSTOM, Tunis, 162 p

    Google Scholar 

  • Crowell M, Douglas BC, Leatherman SP (1997) On forecasting future U.S. shoreline positions: a test of algorithms. J Coast Res 13(4):1245–1255

    Google Scholar 

  • Cui BL, Li XY (2011) Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005). Geomorphology 127:32–40

    Article  Google Scholar 

  • Daoud M (1993) Estimation des travaux de dragage d’entretien pour les ports. Séminaire Maghrébin, protection du littoral contre l’érosion et des ports maritimes contre l’ensablement, ministère de l’Equipement et de l’Habitat, 24–25 mai, 14 p

  • Davidson MA, Lewis RP, Turner IL (2010) Forecasting seasonal to multi-year shoreline change. Coast Eng 57:620–629

    Article  Google Scholar 

  • Dawson JL, Smithers SG (2010) Shoreline and beach volume change between 1967 and 2007 at Raine Island, Great Barrier Reef, Australia. Glob Planet Chang 72:141–154

    Article  Google Scholar 

  • Dellepiane S, De Laurentiis R, Giordano FG (2004) Coastline extraction from SAR images and a method for the evaluation of coastline precision. Pattern Recogn Lett 35:1461–1470

    Article  Google Scholar 

  • Dewidar KH, Frihy OE (2008) Pre and post-beach response to engineering hard structures using Landsat time-series at the northwestern part of the Nile delta, Egypt. J Coast Conserv 11:133–142

    Article  Google Scholar 

  • Dolan R, Fenster SM, Homes SJ (1991) Temporal analysis of shoreline recession and accretion. J Coast Res 7(3):723–743

  • Douglas BC, Crowell M (2000) Long-term shoreline position prediction and error propagation. J Coast Res 16(1):145–152

    Google Scholar 

  • Durduran SS (2010) Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal Landsat imagery. Environ Monit Assess 164:453–461

    Article  Google Scholar 

  • Ekercin S (2007) Coastline change assessment at the Aegean Sea coasts in Turkey using multitemporal Landsat Imagery. J Coast Res 23(3):691–698

    Article  Google Scholar 

  • El Arrim A (1996) Étude de l’impact de la dynamique sédimentaire et des aménagements sur la stabilité du littoral du Golfe de Tunis. Thèse de Doctorat en géologie, université de Tunis El Manar, Tunis, 208 p

  • Fathallah S, Halouani N, Gueddari M (2010) Évolution spatio-temporelle du trait de côte de Sousse à Monastir (Est de la Tunisie). Geo Eco Trop 34:103–112

    Google Scholar 

  • Fenster MS, Dolan R, Elder JF (1993) A new method for predicting shoreline positions from historical data. J Coast Res 9(1):147–171

    Google Scholar 

  • Fletcher C, Rooney J, Barbee M, Lim SC, Richmond (2003) Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J Coast Res Spec Issue 38:106–124

    Google Scholar 

  • Frazier PS, Page KJ (2000) Water body detection and delineation with Landsat TM data. ISPRS J Photogramm Eng Remote Sens 66(12):1461–1467

    Google Scholar 

  • Genz AS, Fletcher CH, Dunn RA, Frazier LN, Rooney JJ (2007) The predictive accuracy of shoreline rate methods and alongshore beach variation on Maui, Hawaii. J Coast Res 23(1):87–105

    Article  Google Scholar 

  • Goodchild MF (2001) Metrics of scale in remote sensing and GIS. Int J App Earth Observ Geoinf 3:114–120

    Article  Google Scholar 

  • Gu D, Gillespie A (1998) Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry. Remote Sens Environ 64:166–175

    Article  Google Scholar 

  • Guariglia A, Buonamassa A, Losurdo A, Saladino R, Trivigno ML, Zaccagnino A, Colangelo A (2006) A multisource approach for coastline mapping and identification of shoreline changes. Ann Geophys 41(1):295–304

    Google Scholar 

  • Halouani N, Sabatier F, Gueddari M, Fleury J (2007) Évolution du trait de côte de Tabarka-Bouterfess, Nord-Ouest de la Tunisie. Méditerranée 108:131–137

    Article  Google Scholar 

  • Halouani N, Fathallah S, Gueddari M (2011) Beach and nearshore morphodynamic changes of the Tabarka coast, Northwest of Tunisia. Environ Earth Sci 66(4):1059–1065

    Article  Google Scholar 

  • Halouani N, Gueddari M, Frihy O (2013) The Northwestern Mediterranean coast of Tunisia: wave processes, shoreline stability and management implications. Arab J Sci Eng 38(7):1851–1860

    Article  Google Scholar 

  • Hantson S, Chuvieco E (2011) Evaluation of different topographic correction methods for Landsat imagery. Int J App Earth Observ Geoinf 13:691–700

    Article  Google Scholar 

  • Hereher M (2011) Mapping coastal erosion at the Nile Delta western promontory using Landsat imagery. Environ Earth Sci 64(4):1117–1125

    Article  Google Scholar 

  • Kelley GW, Hobgood JS, Bedford KW, Schwab DJ (1998) Generation of three dimensional lake model forecasts for Lake Erie. Weather Forecast 13:305–315

    Article  Google Scholar 

  • Kuleli T (2010) Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environ Monitor Assess 167:387–397

    Article  Google Scholar 

  • Kumar A, Narayana AC, Jayappa KS (2010) Shoreline changes and morphology of spits along southern Karnataka, west coast of India: a remote sensing and statistics-based approach. Geomorphology 120:133–152

    Article  Google Scholar 

  • Kurt S, Karaburun A, Demirci A (2010) Coastline changes in Istanbul between 1987 and 2007. Sci Res Essays 5(19):3009–3017

    Google Scholar 

  • Li G, Zhuang K, Wei H (2000) Sedimentation in the Yellow River delta. Part III. Seabed erosion and diaprirism in the abandoned subaqueous delta lobe. Mar Geol 168:129–144

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 15th edn. Wiley-Blackwell, USA, 704 p

    Google Scholar 

  • Liu H, Sherman D, Gu S (2007) Automated extraction of shorelines from airborne Light Detection and Ranging data and accuracy assessment based on Monte Carlo Simulation. J Coast Res 23(6):1359–1369

    Article  Google Scholar 

  • Liu H, Wang L, Sherman DJ, Wu Q, Su H (2011) Algorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR data. J Geogr Inf Syst 3:99–119

    Google Scholar 

  • Louati M, Zargouni F (2013) Le littoral entre l’actuelle embouchure de l’oued Miliane et Soliman, Tunisie. Analyse de l’évolution du trait de côte par photo-interprétation et système d’information géographique. Géomorphologie: relief, processus, environnement 2:209–224

  • Maiti S, Bhattacharya A (2009) Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach. Mar Geol 257:11–23

    Article  Google Scholar 

  • Marfai MA, Almohammad H, Dey S, Susanto B, King L (2008) Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environ Monit Assess 142:297–308

    Article  Google Scholar 

  • Mather PM, Koch M (2011) Computer processing of remotely-sensed images. An Introduction, 4th edn. Wiley-Blackwell, UK, 429 p

    Book  Google Scholar 

  • Mills JP, Buckley SJ, Mitchell HL, Clarke PJ, Edwards SJ (2005) A geomatics data integration technique for coastal change monitoring. Earth Surf Process Landf 30:651–664

    Article  Google Scholar 

  • Morton RA, Miller T, Moore L (2005) Historical shoreline changes along the US Gulf of Mexico: a summary of recent shoreline comparisons and analyses. J Coast Res 21(4):704–709

    Article  Google Scholar 

  • Moussa M, Baccar L, Ben Khemis R (2005) La lagune de Ghar El Melh: diagnostic écologique et perspectives d’aménagement hydraulique. Revue des Sciences de l’Eau 18:13–26

    Article  Google Scholar 

  • Mujabar PS, Chandrasekar N (2013) Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab J Geosci 6(3):647–664

    Article  Google Scholar 

  • Muslim AM, Foody GM, Atkinson PM (2007) Shoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, Malaysia. J Coast Res 23(6):1399–1408

    Article  Google Scholar 

  • Natesan U, Thulasiraman N, Deepthi K, Kathiravan K (2013) Shoreline change analysis of Vedaranyam coast, Tamil Nadu, India. Environ Monit Assess 185(6):5099–5109

    Article  Google Scholar 

  • Oueslati A (2004) Littoral et aménagement en Tunisie. Orbis, Tunis, 534 p

    Google Scholar 

  • Pajak MJ, Leatherman S (2002) The high water line as shoreline indicator. J Coast Res 18(2):329–337

    Google Scholar 

  • Paskoff R (1978) L’évolution de l’embouchure de la Medjerda (Tunisie). Photo-Interprétation 5:1–23

    Google Scholar 

  • Paskoff R (1981) Évolution récente de la flèche de Foum El Oued, delta de la Medjerda (Tunisie nord-orientale). Méditerranée 43(4):39–42

    Article  Google Scholar 

  • Paskoff R (1988) Tunisia. In: Walker HJ (ed) Artificial structures and shorelines, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 269–271

    Chapter  Google Scholar 

  • Pimienta J (1959) Le cycle Pliocène-Actuel dans les bassins paraliques de Tunis. Mémoire Société Géologique, France, 85,176 p

    Google Scholar 

  • Pirazzoli PA (1986) Secular trends of relative sea level change indicated by tide gauge record. J Coast Res Spec Issue 1:1–26

    Google Scholar 

  • Plant NG, Aarninkhf SGJ, Turner IL, Kingston KS (2007) The performance of shoreline detection models applied to video imagery. J Coast Res 23(3):658–670

    Article  Google Scholar 

  • Pranzini E (2001) Updrift river mouth migration on cuspate deltas: two examples from the coast of Tuscany (Italy). Geomorphology 38(1–2):125–132

    Article  Google Scholar 

  • Ryu JH, Won JS, Min KD (2002) Waterline extraction from Landsat TM data in a tidal flat. A case study in Gomso Bay, Korea. Remote Sens Environ 83(3):442–456

    Article  Google Scholar 

  • Sabatier F, Maillet G, Provansal M, Fleury TJ, Suanez S, Vella C (2006) Sediment budget of the Rhône delta shoreface since the middle of the 19th century. Mar Geol 234:143–157

    Article  Google Scholar 

  • Saïdi H, Souissi R, Zargouni F (2012) Impact of shore-parallel breakwaters on the micotidal coast of Hammam-Lif (North-East of Tunisia). Arab J Geosci 5(2):345–352

    Article  Google Scholar 

  • Saïdi H, Souissi R, Zargouni F (2013) Grain size characteristics of superficial sediments of the Gulf of Tunis (NE Tunisia). Arab J Geosci. doi:10.1007/s12517-013-1008-0

    Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Smith MJ, Cromley RG (2012) Measuring historical coastal change using GIS and the change polygon approach. Trans GIS 16(1):3–15

    Article  Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sens Environ 75(2):230–244

    Article  Google Scholar 

  • STUDI (2007a) Étude du plan directeur des ports de pêche: diagnostic de la situation actuelle du port de pêche de Ghar El Melh, 8 p

  • STUDI (2007b) Étude du plan directeur des ports de pêche : diagnostic de la situation actuelle du site abri du port de pêche côtière de Kalaat Landlous, 14 p

  • Szmytkiewicz M, Biegowski J, KaczmArek L (2000) Coastline changes nearby harbor structures: one-line models versus field data. Coast Eng 40:119–139

    Article  Google Scholar 

  • Thao PTH, Duan HD, To DV (2008) Integrated remote sensing and GIS for calculating shoreline change in Phan-Thiet coastal area. Int Sym Geoinformat Spat Infrastruct Development in Earth and Allied Sci, 4–6 December, Hanoi, Vietnam, 6 p

  • Thieler ER, Martin D, Ergul A (2003) The digital shoreline analysis system, version 2.0: Shoreline change measurement software extension for Arc-View. U.S. Geological Survey Open-File Report 03-076 (http://woodshole.er.usgs.gov/projectpages/dsas/)

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ayhan E (2009) Digital Shoreline Analysis System (DSAS) version 4.0. An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008–1278

  • Turki S, Mastouri A, Akrout F, Balti N, Baouech I, M’rabet R (2009) Potential impacts of sebkhet Ariana rainfall discharges on the trophic state of the coastal zone of Raoued (Gulf of Tunis, Tunisia). Desalt 246:337–343

    Article  Google Scholar 

  • White SA, Wang Y (2003) Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline. Remote Sens Environ 85:39–47

    Article  Google Scholar 

  • Winarso G, Judijanto A, Budhiman S (2001) The potential application remote sensing data for coastal study. 22nd Asian Conf Remote Sens, 5–9 November, Singapore, 5 p

  • Yamano H, Shimazaki H, Matsunaga T, Ishoda A, McClennen C, Yokoki H, Fujita K, Osawa Y, Kayanne H (2006) Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology 82(3–4):398–411

    Article  Google Scholar 

  • Yu Y, Acton ST (2004) Automated delineation of coastline from Polarimetric SAR Imagery. Int J Remote Sens 25(17):3423–3438

    Article  Google Scholar 

  • Zahar Y (2001) L’estimation probabiliste des durées de services futures des barrages en Tunisie. Essai de caractérisation et proposition d’une formule régionale. La Houille Blanche 1:71–80

    Article  Google Scholar 

  • Zahar Y, Ghorbel A, Albergel J (2008) Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia). J Hydrol 351:318–330

    Article  Google Scholar 

  • Zhan X, Sohlberg RA, Townshend JRG, Di Miceli C, Carroll ML, Eastman JC, Hansen MC, De Fries RS (2002) Detection of land cover changes using MODIS 250 m data. Remote Sens Environ 83:336–350

    Article  Google Scholar 

  • Zhao B, Guo H, Yan Y, Wang Q, Li B (2008) A simple waterline approach for tidelands using multi-temporal satellite images: a case study in the Yangtze Delta. Estuar Coast Shelf Sci 77:134–142

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the USGS for making available for free the Landsat data and the Digital Shoreline Analysis Software on its Websites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Louati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louati, M., Saïdi, H. & Zargouni, F. Shoreline change assessment using remote sensing and GIS techniques: a case study of the Medjerda delta coast, Tunisia. Arab J Geosci 8, 4239–4255 (2015). https://doi.org/10.1007/s12517-014-1472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1472-1

Keywords

Navigation