Skip to main content
Log in

Geomatics activities for monitoring the large landslide of Maierato, Italy

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

The paper discusses the contribution given by geomatics to monitoring operations regarding a large landslide. The phenomenon affects an entire hill at the edge of the town of Maierato, southern Italy, which bisected the main access road to the town. In the first year after the main event, several surveying methods have been performed by different institutions, often not coordinated. At the end of 2010, an agreement was stated between the Civil Protection Department and the CAMILab of the University of Calabria, regarding the realization of geological, geotechnical, hydrological, and hydraulic studies and surveys in the Municipality of Maierato. The aim is to set up a model of the evolution of the phenomenon and to obtain the periodic assessment of the residual risk level. For understanding the event deeply, the integration of a number of methods of investigation, both geophysical and geotechnical, with geomatics techniques has been performed. The final goal is to set up an early warning system. The used geomatics techniques are the following: total station (operating continuously), Global Navigation Satellite System (GNSS) surveys, laser scanner, and digital photogrammetry. The total station controls and transmits the position of 20 points continuously. The design of the control network and the data acquired during the first 11 months of monitoring are discussed. GNSS receivers are used in static mode for the reference points. Kinematic and RTK surveys have been made to obtain the cross sections, useful to interpret the geoelectrical tomography correctly. Laser scanner has been used to obtain a 3-D model of the area and to evaluate the volume of the landslide. The first 18 months of continuous monitoring show, on the one hand, an excellent repeatability of the measures, and on the other, they confirm the results obtained by geotechnical investigations (inclinometers, etc.) and surface surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Barrell H, Sears JE (1939) The refraction and dispersion of air for the visible spectrum. Philos Trans Royal Soc London, Ser A Math Phys Sci 238 786:1–64

    Article  Google Scholar 

  • Bayoud Fadi A (2006) Leica’s pinpoint EDM technology with modified signal processing and novel optomechanical features. Proc FIG Meet, Munich

    Google Scholar 

  • Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Optics 35:1566–1573. doi:10.1364/AO.35.001566

    Article  Google Scholar 

  • Ciddor PE, Hill RJ (1999) Refractive index of air. 2. Group index. Appl Optics 38:1663–1667. doi:10.1364/AO.38.001663

    Article  Google Scholar 

  • Comerci V, Di Manna P (2010) Secondo verbale di sopralluogo sulla frana di Maierato (VV) marzo 2010. Tec Rep ISPRA

  • Conte E (2012) Report AM/R14/A_M5/a Studi ed indagini geologiche, geotecniche, idrologiche ed idrauliche nel comune di Maierato (Versace P editor). Tec Rep, CAMILAB-University of Calabria

  • Cruden D, Varnes DJ (1996) Landslide types and processes. In Special Report 247: landslides: investigation and mitigation, Transp Res Board, Washington DC, 36–75

  • De Agostino M, Lingua A, Piras M (2012) Rock face surveys using a LiDAR MMS. Ital J Remote Sens 44:141–151. doi:10.5721/ItJRS201244111

    Article  Google Scholar 

  • Doglioni A, Galeandro A, Guerricchio A, Fortunato G, Guglielmo E, Ponte M, Simeone V (2011) Analysis of the rainfall preceding the activation of the large Maierato landslide in 2010. Proc of the Second World Landslide Forum: 107–114

  • Gattinoni P, Scesi L, Arieni L, Canavesi M (2012) The February 2010 large landslide at Maierato, Vibo Valentia, Southern Italy. Landslides 9:255–261. doi:10.1007/s10346-011-0296-2

    Article  Google Scholar 

  • Glabsch J, Heunecke O, Schuhbäck S (2009) Monitoring the Hornbergl landslide using a recently developed low cost GNSS sensor network. J Appl Geod 3(3):179–192. doi:10.1515/JAG.2009.019

    Google Scholar 

  • Guerricchio A, Fortunato G, Guglielmo EA, Ponte M, Simeone V (2010) Hydrogeological conditioning and deep-seated gravitational slope deformations effects on the activation of the large landslide of Maierato in 2010. InTecniche per la Difesa dall’inquinamento 31:661–706

    Google Scholar 

  • Guerricchio A, Doglioni A, Fortunato G, Galeandro A, Guglielmo E, Versace P, Simeone V (2012) Landslide hazard connected to deep seated gravitational slope deformations and prolonged rainfall: Maierato landslide case history. Rend Online Soc Geol It 21:574–576

    Google Scholar 

  • Josep A, Gilia JA, Corominasa J, Riusa J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55(3):167–192. doi:10.1016/S0013-7952(99)00127-1

    Article  Google Scholar 

  • Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E (2010) Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne landslide (Isère, France). Remote Sens 2:2785–2802. doi:10.3390/rs122785

    Article  Google Scholar 

  • Kimura H, Yamaguchi Y (2000) Detection of landslide areas using satellite radar interferometry. Photogramm Eng Rem S 66(3):337–344

    Google Scholar 

  • Leica TS30/TM30 (2009) Manual 1.1. http://www.surveyteq.com/pdf/Leica_TS30_TM30_UM_en.pdf. Accessed 30 Mar 2014

  • Lichun S, Wang X, Zhao D, Qu J (2008) Application of 3D laser scanner for monitoring of landslide hazards. Int Arch Photogramm Remote Sens 37(B1):277–281

    Google Scholar 

  • Lingua A, Piatti D, Rinaudo F (2007) Remote monitoring of a landslide using an integration of Gb-Insar and Lidar techniques. Int Arch Photogramm Remote Sens Spat Inf Sci 37:361–366

    Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic Lidar: state-of-the-art. ISPRS J Photogramm Remote Sens 64:1–16. doi:10.1016/j.isprsjprs.2008.09.007

    Article  Google Scholar 

  • Pirotti F, Guarnieri A, Vettore A (2013) Vegetation filtering of waveform terrestrial laser scanner data for DTM production. Appl Geomat 5:311–322. doi:10.1007/s12518-013-0119-3

    Article  Google Scholar 

  • Rizzo E, Straface S (2012) Report AM/R16/A_M10/a, Studi ed indagini geologiche, geotecniche, idrologiche ed idrauliche nel Comune di Maierato. Agreement between CAMILAB-University of Calabria and Deputy Commissioner for the hydrogeological emergency (P. Versace coordinator)

  • Rizzo E, Caputi A, Giocoli A, Perrone A, Pisicitelli S, Votta M (2012) Tomografie geoelettriche ad alta risoluzione (ERT) per la caratterizzazione del versante in frana presso il Comune di Maierato (VV). Tech Rep CNR—IMAA

  • Rüeger JM (1996) Electronic distance measurement—an introduction, 4th edn. Springer, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Scaioni M, Feng T, Barazzetti L et al. (2014) Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment. Geomatics, Nat Hazards Risk: 1-24. doi: 10.1080/19475705.2014.885090

  • Stiros SC, Vichas C, Skourtis C (2004) Landslide monitoring based on geodetically derived distance changes. J Surv Eng 130(4):156–162. doi:10.1061/(ASCE)0733-9453(2004)130:4(156)

    Article  Google Scholar 

  • Tarchia D, Casagli N, Fanti R, Leva D, Luzic G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68(1–2):15–30. doi:10.1016/S0013-7952(02)00196-5

    Article  Google Scholar 

  • Tsaia Z, Youa GJY, Leea HY, Chiub YJ (2012) Use of a total station to monitor post-failure sediment yields in landslide sites of the Shihmen reservoir watershed. Geomorphology 139–140:438–451. doi:10.1016/j.geomorph.2011.11.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Artese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artese, G., Perrelli, M., Artese, S. et al. Geomatics activities for monitoring the large landslide of Maierato, Italy. Appl Geomat 7, 171–188 (2015). https://doi.org/10.1007/s12518-014-0146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-014-0146-8

Keywords

Navigation