Skip to main content

Advertisement

Log in

Geospatial soil loss risk assessment using RUSLE model: a study of Panjkora River Basin, Khyber Pakhtunkhwa, Pakistan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Soil erosion and consequent sedimentation are natural processes that are enhanced by human activities. Soil erosion and related land degradation are major issues, particularly in subtropical monsoon-dominated parts of the world. Soil erosion not only endangers soil fertility and food availability but also harms aquatic ecosystems and water supplies. The purpose of this research is to quantify and map the yearly soil loss in the Panjkora river basin, Pakistan. The Revised Universal Soil Loss Equation (RUSLE) model is used in the geospatial environment to achieve the study objectives. The results reveal that the Panjkora basin is moderate to highly susceptible to soil erosion. The estimated annual soil loss from the basin is 5.94 million tons or 10.25 tons per hectare/year. Though the high and very high soil erosion is experienced only in 2.18% of the overall study area, is responsible for 78.52% of the entire soil loss from the Panjkora basin. The study suggests that the K factor (soil type), R factor (rainfall intensity), and LS factor (topography) have the most significant impact on soil erosion in the study area. This study emphasizes the need for proper land and water resource management with viable rehabilitation measures. The soil risk map aids in identifying soil erosion hotspots where efforts should be concentrated to prevent future soil loss. Terraced agricultural and arboriculture methods should be implemented in the Panjkora river basin to prevent additional soil loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali A, Khan TA, Ahmad S (2018) Analysis of climate data of Khyber Pakhtunkhwa Pakistan. Int Res J Eng Technol 5:4266–4282

    Google Scholar 

  • Ali K, Khan N, Ullah R, Shah M, Khan MEH, Jones DA, Dewidar M (2022, 1801) Spatial Pattern and Key Environmental Determinants of Vegetation in Sand Mining and Non-Mining Sites along the Panjkora River Basin. Land 11(10)

  • Amit BERA (2017) Estimation of soil loss by USLE model using GIS and remote sensing techniques: a case study of Muhuri River Basin, Tripura India. Eurasian J Soil Sci 6(3):206–215

    Google Scholar 

  • Arunrat N, Pumijumnong N (2014) Evaluation of Erosion Productivity Impact Calculator (EPIC) model for nitrogen losses in rice paddy of Thailand. Asian J Agric Res 8(2):70–83

    Google Scholar 

  • Ashraf A, Abuzar MK, Ahmad B, Ahmad MM, Hussain Q (2017) Modeling risk of soil erosion in high and medium rainfall zones of Pothwar region, Pakistan. Proc Pak Acad Sci: B Life Environ Sci 54(2):67–77

    Google Scholar 

  • Aster G (2011) Readme. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM). Version 2

  • Avakoudjo J, Kouelo FA, Kindomihou VM, Akponikpe PI, Azontonde AH, Sinsin BA, Agonvinon MS (2020) Water Erosion in the Donga Soils in Subhumid Zone in West Africa. J Environ Prot 11:1073–1088

    Article  Google Scholar 

  • Azizian A, Koohi S (2021) The effects of applying different DEM resolutions, DEM sources and flow tracing algorithms on LS factor and sediment yield estimation using USLE in Barajin river basin (BRB). Iran. Paddy Water Environ 19:453–468

    Article  Google Scholar 

  • Babu R, Dhyani BL, Kumar N (2004) Assessment of erodibility status and refined Iso-Erodent Map of India. Indian J Soil Conserv 32(2):171–177

    Google Scholar 

  • Bajirao TS, Kumar P (2021) Geospatial technology for prioritization of Koyna River basin of India based on soil erosion rates using different approaches. Environ Sci Pollut Res 28:35242–35265

    Article  Google Scholar 

  • Balabathina V, Raju RP, Mulualem W (2019) Integrated remote sensing and gis-based universal soil loss equation for soil erosion estimation in the Megech River Catchment, Tana Lake Sub-basin North-western Ethiopia. Am J Geogr 8(4):141–157

    Google Scholar 

  • Basson GR (2008) Reservoir sedimentation- An overview of global sedimentation rates and predicted sediment deposition

  • Batool S, Shirazi SA, Mahmood SA (2021) Appraisal of soil erosion through RUSLE model and hypsometry in Chakwal Watershed (Potwar-Pakistan). Sarhad J Agric 37(2):594–606

    Google Scholar 

  • Bekele B, Gemi Y (2021) Soil erosion risk and sediment yield assessment with universal soil loss equation and GIS: in Dijo watershed, Rift valley Basin of Ethiopia. Model Earth Syst Environ 7(1):273–291

    Article  Google Scholar 

  • Benchettouh A, Kouri L, Jebari S (2017) Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab J Geosci 10(4):79

    Article  Google Scholar 

  • Bera A (2017) Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: a case study of Gumti River Basin, Tripura India. Model Earth Syst Environ 3(1):29

    Article  Google Scholar 

  • Berberoglu S, Cilek A, Kirkby M, Irvine B, Donmez C (2020) Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environ Monit Assess 192(8):1–22

    Article  Google Scholar 

  • Bhat SA, Hamid I, Dar MUD, Rasool D, Pandit BA, Khan S (2017) Soil erosion modeling using RUSLE & GIS on micro watershed of J&K. J Pharmacogn Phytochem 6(5):838–842

    Google Scholar 

  • Boakye E, Anyemedu FOK, Donkor EA, Quaye-Ballard JA (2020) Spatial distribution of soil erosion and sediment yield in the Pra River Basin. SN Appl Sci 2(3):1–12

    Article  Google Scholar 

  • Borrelli P, Märker M, Panagos P, Schütt B (2014) Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena 114:45–58

    Article  Google Scholar 

  • Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, Ballabio C (2020) Land use and climate change impacts on global soil erosion by water (2015-2070). Proc Natl Acad Sci 117(36):21994–22001

    Article  Google Scholar 

  • Chuenchum P, Xu M, Tang W (2020) Estimation of soil erosion and sediment yield in the Lancang–Mekong river using the modified revised universal soil loss equation and GIS techniques. Water 12(1):135

    Article  Google Scholar 

  • Coward MP, Rex DC, Asif Khan M, Windley BF, Broughton RD, Luff IW, Pudsey CJ (1986) Collision tectonics in the NW Himalayas. Geol Soc Spec Publ 19(1):203–219

    Article  Google Scholar 

  • Danishwar S, Stern RJ, Khan MA (2001) Field relations and structural constraints for the Teru volcanic formation, northern Kohistan Terrane Pakistani Himalayas. J Asian Earth Sci 19(5):683–695

    Article  Google Scholar 

  • Das GK, Guchait R (2016) Modeling of risk of soil erosion in Kharkai Watershed using RUSLE and TRMM Data: A geospatial approach. Int J Sci Res 5:1–10

    Google Scholar 

  • Das S, Bora PK, Das R (2021) Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Model Earth Syst Environ 8:1171–1177

    Article  Google Scholar 

  • Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51(5):427–433

    Google Scholar 

  • Dewangan CL, Ahmad I (2019) Assessment of Reservoir Sedimentation and Identification of Critical Soil Erosion Zone in Kodar Reservoir Watershed. Appl Geomatics Civil Eng: Proc ICGCE 33:203

    Article  Google Scholar 

  • Dewangan CL, Ahmad I (2020) Assessment of Reservoir Sedimentation and Identification of Critical Soil Erosion Zone in Kodar Reservoir Watershed of Chhattisgarh State, India. In: Applications of Geomatics in Civil Engineering. Springer, Singapore, pp 203–214

    Chapter  Google Scholar 

  • Diodato N (2004) Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrol Earth Syst Sci 8(1):103–107

    Article  Google Scholar 

  • Duarte A (2019) Hopper system design using CFD–Warsak HPS Water-intake (Pakistan). Conference Paper: Bend and straight open-channel experimental research Available at: https://www.researchgate.net/publication/335919808_hopper_system_design_using_cfd_warsak_hpp_water-intake-aduarte

    Google Scholar 

  • Dutta D, Das S, Kundu A, Taj A (2015) Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth systems and environment 1:1–9

    Article  Google Scholar 

  • El-Swaify SA, Dangler EW (1976) Erodibilities of selected tropical soils in relation to structural and hydrologic parameters. In: Foster G (ed) Soil Erosion Prediction and Control. Soil and Water Conservation Society, Ankeny, pp 105–114

    Google Scholar 

  • Erdogan EH, Erpul G, Bayramin İ (2007) Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed. Environ Monit Assess 131(1):153–161

    Article  Google Scholar 

  • Esmaeili Gholzom H, Ahmadi H, Moeini A, Motamed Vaziri B (2021) Water erosion risk assessment in the Kasilian watershed with ICONA model and GIS/RS techniques. Res Earth Sci 12(3):144–163

    Google Scholar 

  • Eswaran H, Lal R, Reich PF (2019) Land degradation: an overview. In: Response to land degradation, 1st edn. CRC Press, pp 20–35

    Chapter  Google Scholar 

  • Farhan Y, Anaba O (2016) A Remote Sensing and GIS Approach for Prioritization of Wadi Shueib Mini-Watersheds (Central Jordan) Based on Morphometric and Soil Erosion Susceptibility Analysis. J Geogr Inf Syst 8:1–19

    Google Scholar 

  • Flabouris K (2008) Study of rainfall factor R on the RUSLE law (Doctoral dissertation, Doctoral dissertation). Aristotle University of Thessaloniki, Greece

    Google Scholar 

  • Foster GR (1986) Understanding ephemeral gully erosion. In: Assessing the National Research Inventory. National Research Council, Board on Agriculture, Soil Conservation, vol 2. National Academy Press, Washington DC, pp 90–118

    Google Scholar 

  • Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci Front 7(6):953–961

    Article  Google Scholar 

  • Ghosal K, Bhattacharya SD (2020) A Review of RUSLE Model. J Indian Soc Remote Sens 48(4):689–707

    Article  Google Scholar 

  • Gilani H, Ahmad A, Younes I, Abbas S (2021) Estimation of annual soil erosion dynamics (2005-2015) in Pakistan using Revised Universal Soil Loss Equation (RUSLE). Authorea Preprints. https://doi.org/10.1002/ldr.4138

    Book  Google Scholar 

  • Helldén U (1987) An assessment of woody biomass, community forests, land use and soil erosion in Ethiopia. A feasibility study on the use of remote sensing and GIS [geographical information system]-analysis for planning purposes in developing countries. Lund University Press

    Google Scholar 

  • Hurni H (1985) Soil conservation manual for Ethiopia. First draft. In: Ministry of Agriculture. Natural Resources Conservation and Development Department, Community Forests and Soil Conservation Development Department. Addis Ababa

    Google Scholar 

  • ICONA (1988) Agresividad de la lluvia en Espan˜a. Servicio de Publicaciones del Ministerio de Agricultura, Pescay Alimentacion, Madrid, Espan˜a, p 39

    Google Scholar 

  • Jiang Q, Zhou P, Liao C, Liu Y, Liu F (2020) Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a typical degraded watershed of central China. Sci Total Environ 749:141609

    Article  Google Scholar 

  • Kalita N, Borgohain A, Sahariah D, Sarma S (2018) Estimation of soil loss sensitivity in the Jinari river basin using the Universal Soil Loss Equation. Natl Geogr J India 64(1-2):118–127

    Google Scholar 

  • Kaur B, Sur K, Verma VK, Pateriya B (2022) Implications of Watershed Management Programs for Sustainable Development in Rural Scenario—A Case Study from Foothills of Punjab State, India. Water Conserv Sci Eng 7:647–655

    Article  Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Sahoo S (2018) Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. Int Soil Water Conserv Res 6(1):31–42

    Article  Google Scholar 

  • Koirala P, Thakuri S, Joshi S, Chauhan R (2019) Estimation of soil erosion in Nepal using a RUSLE modeling andgeospatial tool. Geosciences 9(4):147

    Article  Google Scholar 

  • Kolli MK, Opp C, Groll M (2021) Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environ Earth Sci 80(4):1–14

    Article  Google Scholar 

  • Kumar S, Kushwaha SPS (2013) Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. J Earth Sys Sci 122(2):389–398

    Article  Google Scholar 

  • Kuok KK, Mah DY, Chiu PC (2013) Evaluation of C and P factors in universal soil loss equation on trapping sediment: case study of Santubong River. J Water Resource Prot 5(12):1149–1154

    Article  Google Scholar 

  • Li C, Pan C (2020) Overland runoff erosion dynamics on steep slopes with forages under field simulated rainfall and inflow. Hydrol Process 34(8):1794–1809

    Article  Google Scholar 

  • Liu G, Zheng F, Wilson GV, Xu X, Liu C (2021) Three decades of ephemeral gully erosion studies. Soil Tillage Res 212:105046

    Article  Google Scholar 

  • Luvai A, Obiero J, Omuto C (2022) Soil Loss Assessment Using the Revised Universal Soil Loss Equation (RUSLE) Model. Appl Environ Soil Sci 2022. https://doi.org/10.1155/2022/2122554

  • Mahmood S, A ul H K, Ullah S (2016) Assessment of 2010 flash flood causes and associated damages in Dir Valley, Khyber Pakhtunkhwa Pakistan. Int J Disaster Risk Reduct 16:215–223

    Article  Google Scholar 

  • Maqsoom A, Aslam B, Hassan U, Kazmi ZA, Sodangi M, Tufail RF, Farooq D (2020) Geospatial assessment of soil erosion intensity and sediment yield using the Revised Universal Soil Loss Equation (RUSLE) model. ISPRS Int J Geo-inf 9(6):356

    Article  Google Scholar 

  • McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the Universal Soil Loss Equation. T ASAE 30(5):1387–1396

    Article  Google Scholar 

  • Meliho M, Nouira A, Benmansour M, Boulmane M, Khattabi A, Mhammdi N, Benkdad A (2019) Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J Environ Radioactiv 208:106021

    Article  Google Scholar 

  • Mohammed S, Alsafadi K, Talukdar S, Kiwan S, Hennawi S, Alshihabi O, Harsanyie E (2020) Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sens Appl Soc Environ 20:100375

    Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50(5):1294–1298

    Article  Google Scholar 

  • Morgan RPC, McIntyre K, Vickers AW, Quinton JN, Rickson RJ (1997) A rainfall simulation study of soil erosion on rangeland in Swaziland. Soil technol 11(3):291–299

    Article  Google Scholar 

  • Morris G (2020) Classification of management alternatives to combat reservoir sedimentation. Water 12(3):861

    Article  Google Scholar 

  • Mosavi A, Sajedi-Hosseini F, Choubin B, Taromideh F, Rahi G, Dineva AA (2020, 1995) Susceptibility mapping of soil water erosion using machine learning models. Water 12(7)

  • Munoth P, Goyal R (2020) Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin India. Int J River Basin Manag 18(2):177–189

    Article  Google Scholar 

  • Nampak H, Pradhan B, Mojaddadi Rizeei H, Park HJ (2018) Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and Revised Universal Soil Loss Equation model. Land Degrad Dev 29(10):3440–3455

    Article  Google Scholar 

  • Ostovari Y, Moosavi AA, Mozaffari H, Pourghasemi HR (2021) RUSLE model coupled with RS-GIS for soil erosion evaluation compared with T value in Southwest Iran. Arab J Geosci 14(2):1–15

    Article  Google Scholar 

  • Pal SC, Chakrabortty R (2019) Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Adv Space Res 64(2):352–377

    Article  Google Scholar 

  • Panagos P, Borrelli P, Meusburger K (2015a) A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosci 5(2):117–126

    Article  Google Scholar 

  • Panagos P, Borrelli P, Meusburger K, van der Zanden EH, Poesen J, Alewell C (2015b) Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ Sci Policy 51:23–34

    Article  Google Scholar 

  • Paszkowski A, JrS G, Borgomeo E, Khan MSA, Hall JW (2021) Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nat Rev Earth Environ 2(11):763–780

    Article  Google Scholar 

  • PEDO (2014) Executive Summary for Shigo Kas Hydropower Project. Pakhtunkhwa Energy Development Organization

    Google Scholar 

  • Pham TG, Degener J, Kappas M (2018) Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int Soil Water Conserv Res 6(2):99–110

    Article  Google Scholar 

  • Phinzi K, Ngetar NS, Ebhuoma O (2021) Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South Africa, using RUSLE and random forest algorithm. S Afr Geogr J 103(2):139–162

    Article  Google Scholar 

  • Prasannakumar V, Vijith H, Abinod S, Geetha NJGF (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front 3(2):209–215

    Article  Google Scholar 

  • Rajbanshi J, Bhattacharya S (2020) Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin India. J Hydrol 587:124935

    Article  Google Scholar 

  • Ram Babu VV, Tejwani KG, Agarwal MC, Bhushan LS (1979) Rainfall Intensity Duration-Return Equation and Nomographs of India. In: Proceeding of International Conference on Statistical Climatology, Tokyo Japan, Nov 29, 1979. In Statistical Climatology Development in Atmospheric Science. Elsevier Scientific Publication Co, p 13

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1996) Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric Handb 703:25–28

    Google Scholar 

  • Rashid MU, Shakir AS, Khan NM (2014) Evaluation of sediment management options and minimum operation levels for Tarbela Reservoir, Pakistan. Arab J Sci Eng 39:2655–2668

    Article  Google Scholar 

  • Riquetti NB, Mello CR, Beskow S, Viola MR (2020) Rainfall erosivity in South America: Current patterns and future perspectives. Sci Total Environ 724:138315

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266

    Article  Google Scholar 

  • Sabir MA, Shafiq-Ur-Rehman S, Umar M, Waseem A, Farooq M, Khan AR (2013) The Impact of Suspended Sediment Load on Reservoir Siltation and Energy Production: a Case Study of the Indus River and Its Tributaries. Pol J Environ Stud 22(1):219–225

    Google Scholar 

  • Saha A, Ghosh M, Pal SC (2020) Understanding the morphology and development of a rill-gully: An Empirical study of Khoai Badland, West Bengal, India. In: Gully Erosion Studies from India and Surrounding Regions. Springer Nature, pp 147–161

    Chapter  Google Scholar 

  • Schwab GO, Frevert RK, Edminster TW, Barnes KK (1981) Chapter 14-Subsurface Drainage Design. Soil and Water Conservation Engineering, 3rd edn. John Wiley & Sons, New York, pp 314–347

    Google Scholar 

  • Searle M, Cox J (1999) Tectonic setting, origin, and obduction of the Oman ophiolite. Geol Soc Am Bull 111(1):104–122

    Article  Google Scholar 

  • Senanayake S, Pradhan B, Alamri A, Park HJ (2022) A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Sci Total Environ 845:157220

    Article  Google Scholar 

  • Shah MT, Shervais JW (1999) The Dir-Utror metavolcanic sequence, Kohistan arc terrane, northern Pakistan. J Asian Earth Sci 17(4):459–475

    Article  Google Scholar 

  • Sharpley AN, Williams JR (1990) EPIC. Erosion/Productivity impact calculator: 1. Model documentation. 2. User manual. U.S. Department of Agriculture Technical Bulletin, p 235

    Google Scholar 

  • Shin GJ (1999a) The analysis of soil erosion analysis in watershed using GIS. Dissertation. Gang-won National University, Gangwon-Do, South Korea

    Google Scholar 

  • Shin KJ (1999b) The soil loss analysis using GSIS in watershed. Dissertation. Kangwon National University, Kangwon-Do, South Korea

    Google Scholar 

  • Shit PK, Pourghasemi HR, Bhunia GS (eds) (2019) Gully erosion studies from India and surrounding regions. Springer Nature

    Google Scholar 

  • Singh G, Rambabu VV, Chandra S (1981) Soil Loss Prediction Research in India. ICAR Bull. Dehradun, CSWCTRI

    Google Scholar 

  • Singh R, Phadke VS (2006) Assessing soil loss by water erosion in Jamni River Basin, Bundelkhand region, India, adopting universal soil loss equation using GIS. Curr Sci 90(10):1431–1435

    Google Scholar 

  • Sullivan MA, Windley BF, Saunders AD, Haynes JR, Rex DC (1993) A palaeogeographic reconstruction of the Dir Group: evidence for magmatic arc migration within Kohistan N. Pakistan. Geol Soc Spec Publ 74(1):139–160

    Article  Google Scholar 

  • Sur K, Chauhan P (2019a) Dynamic trend of land degradation/restoration along Indira Gandhi Canal command area in Jaisalmer District, Rajasthan, India: a case study. Environ Earth Sci 78:1–11

    Article  Google Scholar 

  • Sur K, Chauhan P (2019b) Imaging spectroscopic approach for land degradation studies: a case study from the arid land of India. Geomat Nat Haz Risk 10(1):898–911

    Article  Google Scholar 

  • Syvitski JP, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720):376–380

    Article  Google Scholar 

  • Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: 2011 IEEE international geoscience and remote sensing symposium. IEEE, pp 3657–3660

    Chapter  Google Scholar 

  • Tamene L, Le QB (2015) Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE). Nutr Cycl Agroecosystems 102:17–31

    Article  Google Scholar 

  • Teng H, Liang Z, Chen S, Liu Y, Rossel RAV, Chappell A, Shi Z (2018) Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci Total Environ 635:673–686

    Article  Google Scholar 

  • Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112(3-4):228–245

    Article  Google Scholar 

  • Teshome A, Halefom A, Teshome M, Ahmad I, Taddele Y, Dananto M, Szucs P (2021) Soil erosion modelling using GIS and revised universal soil loss equation approach: a case study of Guna-Tana landscape Northern Ethiopia. Model Earth Syst Environ 7(1):125–134

    Article  Google Scholar 

  • Tirkey AS, Pandey AC, Nathawat MS (2013) Use of satellite data, GIS and RUSLE for estimation of average annual soil loss in Daltonganj watershed of Jharkhand (India). J Remote Sens Technol 1(1):20–30

    Article  Google Scholar 

  • Tiruneh G, Ayalew M (2015) Soil loss estimation using geographic information system in enfraz watershed for soil conservation planning in highlands of Ethiopia. Int J Agric Innov Technol 5(2):21–30

    Google Scholar 

  • Tundu C, Tumbare MJ, Kileshye Onema JM (2018) Sedimentation and its impacts/effects on river system and reservoir water quality: case study of Mazowe catchment, Zimbabwe. Proc Int Assoc Hydrol Sci 377:57–66

    Google Scholar 

  • Ullah K, Zhang J (2020) GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush Pakistan. Plos One 15(3):e0229153

    Article  Google Scholar 

  • Ullah S, Ali A, Iqbal M, Javid M, Imran M (2018) Geospatial assessment of soil erosion intensity and sediment yield: a case study of Potohar Region Pakistan. Environ Earth Sci 77(19):1–13

    Article  Google Scholar 

  • Walling DE (2011) Human impact on the sediment loads of Asian rivers. In: Sediment problems and sediment management in Asian river basins–Proceedings of the workshop held at Hyderabad, India, pp 37–51

  • Williams JR, Jones CA, Dyke PT (1984) The EPIC model and its application. In: Proc. Int. Symp. on minimum data sets for agrotechnology transfer, India, Patancheru, pp 111–121

  • Wilson MJ (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner 39(3):233–266

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration

    Google Scholar 

  • Zhao G, Xue H, Ling F (2010) Assessment of ASTER GDEM performance by comparing with SRTM and ICESat/GLAS data in Central China. In: 2010 18th International Conference on Geoinformatics. IEEE, pp 1–5

    Google Scholar 

  • Zheng F, Zhang XJ, Wang J, Flanagan DC (2020) Assessing applicability of the WEPP hillslope model to steep landscapes in the northern Loess Plateau of China. Soil Tillage Res 197:104492

    Article  Google Scholar 

Download references

Acknowledgements

We are very thankful to “Lukasz Pawlik” for his cooperation during the writing/review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, M.J., Alam, S., Ahmad, W. et al. Geospatial soil loss risk assessment using RUSLE model: a study of Panjkora River Basin, Khyber Pakhtunkhwa, Pakistan. Arab J Geosci 16, 440 (2023). https://doi.org/10.1007/s12517-023-11555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11555-2

Keywords

Navigation