Skip to main content

Advertisement

Log in

Characterization of ASTER spectral bands for mapping of Pyrophyllite of hydrothermal alteration zones in and around Tikamgarh, Madhya Pradesh

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Bundelkhand Craton located in the northern part of the Indian Shield had been subjected to polyphase deformation and polyphase metamorphism in several episodes from Archaean to early Proterozoic times. The Craton comprises pyrophyllite-diaspore deposits mainly along the NE-SW trending shear system indicated by prominent quartz reefs where intense silicification has taken place during hydrothermal alteration. In the present study, the ASTER images were analyzed to demarcate the pyrophyllite deposits in the Tikamgarh based on the spectral characteristics of pyrophyllite with a strong absorption peak of 2.165 μm. The band ratio, band math images from ASTER data and the sub-pixel classifications of pyrophyllite were adopted by using Linear Spectral Unmixing (LSU) and Mixture Tuned Matched Filtering (MTMF) algorithm. The combination of these methods could detect the mineable pyrophyllite deposits more accurately. This approach along with field geological observations, petrological and chemical analyses could differentiate the high-grade and low-grade pyrophyllite more easily. It could provide information regarding the probable pyrophyllite mining activity. This research has also aided knowledge to investigate similar types of deposits anywhere in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abrams M (2000) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21:847–859. https://doi.org/10.1080/014311600210326

    Article  Google Scholar 

  • Ali MA, Ahmed HAM, Ahmed HM, Hefni M (2021) Pyrophyllite: an economic mineral for different industrial applications. Appl Sci 11(23):11357. https://doi.org/10.3390/app112311357

    Article  Google Scholar 

  • Aravindan S, Ganesh B (2014) Analysis of hyperion satellite data for discrimination of banded magnetite quartzite in Godumalai Hill, Salem District, Tamil Nadu, India. Sens GIS 3:569–579

    Google Scholar 

  • Ashley RP, Abrams MJ (1980) Alteration mapping using multispectral images, Cuprite Mining District, Esmeralda County, Nevada. USGS Open File Report 80–367, U.S. Geological Survey, Washington D C. https://doi.org/10.3133/ofr80367

  • Askari G, Pour AB, Pradhan B, Sarfi M, Nazemnejad F (2018) Band Ratios Matrix Transformation (BRMT): a sedimentary lithology mapping approach using ASTER satellite sensor. Sensors 18(10):3213. https://doi.org/10.3390/s18103213

    Article  Google Scholar 

  • Azizi H, Tarverdi MA, Akbarpour A (2010) Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Adv Space Res 46:99–109. https://doi.org/10.1016/j.asr.2010.03.014

    Article  Google Scholar 

  • Basu AK (2007) Role of the Bundelkhand granite massif and the Son-Narmada mega fault in Precambrian crustal evolution and tectonism in Central and Western India. J Geol Soc India 70:745–770

    Google Scholar 

  • Basu AK (2010) Precambrian geology of the Bundelkhand Terrain Central India and adjacent part of Western India. J Econ Geol Georesource Manag 7:1–53

    Google Scholar 

  • Bedini E, Van Der Meer F, Van Ruitenbeek F (2009) Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. Int J Remote Sens 30(2):327–348. https://doi.org/10.1080/01431160802282854

    Article  Google Scholar 

  • Bhattacharya AR (1985) Some unusual strain relations in elliptically deformed xenoliths and feldspar porphyroblasts; Zeitschr. Geol Wissen Berlin 13:689–697

    Google Scholar 

  • Bhattacharya AR, Singh SP (2013) Proterozoic crustal scale shearing in the Bundelkhand massif with special reference to quartz reefs. J Geol Soc India 82:474–484. https://doi.org/10.1007/s12594-013-0178-4

    Article  Google Scholar 

  • Boardman JW (1998) Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering. Summ. Seventh JPL Airborne Geosci. Workshop JPL Publ 97:55–56

    Google Scholar 

  • Boardman JW, Kruse FA (2011) Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Trans Geosci Remote Sens 49:4138–4152. https://doi.org/10.1109/TGRS.2011.2161585

    Article  Google Scholar 

  • Boardman JW (1993) Automated spectral unmixing of AVIRIS data using convex geometry concepts. In Summaries of the Fourth JPL Airborne Geoscience Workshop 11–14. Pasadena, CA: JPL Publication 93–26, NASA Jet Propulsion Laboratory

  • Brown AJ, Cudahy TJ, Walter MR (2006) Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia. Precambrian Res 3–4:211–223. https://doi.org/10.1016/j.precamres.2006.08.014

    Article  Google Scholar 

  • Bunaciu AA, Gabriela E, Tioiu US, Aboul-Enein SY (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45(4). https://doi.org/10.1080/10408347.2014.949616

  • Chang CI (2003) Hyperspectral imaging: techniques for spectral detection and classification. Springer Science & Business Media, Berlin, Germany

    Book  Google Scholar 

  • Chen JM, Sun WD, Yan BK (2009) The application and research of the anomaly extraction process based on the ASTER multi-spectral remote sensing in Tianhu iron ore mine. Xinjiang 388 Geology 27:368–372 (in Chinese with English abstract)

  • Chen JY, Reed IS (1987) A detection algorithm for optical targets in clutter. IEEE Trans Aerosp Electron Syst AES 23:1. https://doi.org/10.1109/TAES.1987.313335

    Article  Google Scholar 

  • Chi KH, Lee HJ (2007) Extraction of pyrophyllite mineralized zone using characteristics of spectral reflectance of rock samples. Korean J Remote Sens 23:6

    Google Scholar 

  • Clark RN, Trude King VV, Klejwa M, Swayze GA, Vergo N (1990) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res. https://doi.org/10.1029/JB095iB08p12653

    Article  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, In: Addison-Wesley: Menlo Park, CA. 2nd edn. Addison-Wesley, Ontario – Sydney

  • Day HW (1976) A working model of some equilibria in the system alumina–silica–water. Am J Sci 276:1254–1284. https://doi.org/10.2475/ajs.276.10.1254

    Article  Google Scholar 

  • Di Tommaso I, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32:275–290. https://doi.org/10.1016/j.oregeorev.2006.05.004

    Article  Google Scholar 

  • Ellis RJ, Scott PW (2004) Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK. Remote Sens Environ 93:1–2. https://doi.org/10.1016/j.rse.2004.07.004

    Article  Google Scholar 

  • Falcone JA, Gomez R (2005) Mapping impervious surface type and sub-pixel abundance using hyperion hyperspectral imagery. Geocarto Int 20:3–10. https://doi.org/10.1080/10106040508542358

    Article  Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38:59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007

    Article  Google Scholar 

  • Ganesh BP, Aravindan S, Raja S, Thirunavukkarasu A (2012) Hyperspectral satellite data (Hyperion) preprocessing—a case study on banded magnetite quartzite in Godumalai Hill, Salem, Tamil Nadu, India. Arab J Geosci 3249–3256. https://doi.org/10.1007/s12517-012-0584-8.

  • Geosystem (2002) ASTER data, Product L1B (Radiance at Sensor)-how do the ATCOR calibration files (*.cal) have to look like? Calibration Files for ASTER in ATCOR Ver.2.0. Geosystem Support Info. t http://gislab.info/docs/calibration_files_for_aster_atcor_v20x

  • Ghosh UK, Babu P, Jeybal S (2018) Delineation of hydrothermal alterations targeting pyrophyllite rich zone in Bundelkhand Gneissic Complex, Tikamgarh and Chhatarpur districts, Madhya Pradesh and Jhansi district, Uttar Pradesh using Advanced Space borne Thermal Emission & Reflection Radiometer (ASTER). Indian J Geosci 72(2):97–104

    Google Scholar 

  • Gifkins C, Herrmann W, Large R (2005) Altered Volcanic Rocks. A Guide to Description and Interpretation. CODES. University of Tasmania, Hobart

    Google Scholar 

  • Gozzard JR (2006) Image processing of ASTER multispectral data. Western Australia Geological Survey, Record 9:51

  • Guha A, Kumar V (2015) Comparative analysis on utilisation of linear spectral unmixing and band ratio methods for processing ASTER data to delineate bauxite over a part of Chotonagpur plateau, Jharkhand, India. Geocarto Int. https://doi.org/10.1080/10106049.2015.1047471

    Article  Google Scholar 

  • Guha A, Ravi S, Ananth Rao D, Vinod Kumar K, Dhananjaya Rao EN (2013) Issues and limitations of broad band remote sensing of kimberlite—a case example from kimberlites of Dharwar Craton, India. Int J Geosci 4:371–379. https://doi.org/10.4236/ijg.2013.42035

    Article  Google Scholar 

  • Guha A, Kumar KV, Rao END, Parveen R (2014) An image processing approach for converging ASTER–derived spectral maps for mapping Kolhan limestone, Jharkhand, India. Curr Sci 106:40–49. https://doi.org/10.18520/CS/V106/I1/40-49

    Article  Google Scholar 

  • Gurusiddappa L, Jadia SK, Singhai RK, Jain AK (1985) A report on geological mapping of the Bundelkhand granite-gneiss complex around Ajnor-Tikamgarh-Bhagwan-Kharagpur area, Tikamgarh and Chhatarpus Districts, Madhya Pradesh. Geological Survey of India. Unpublished report

  • Harsanyi JC, Chang C (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 32(4):779–785. https://doi.org/10.1109/36.298007

    Article  Google Scholar 

  • Herrmann W, Blake M, Doyle M (2001) Short wavelength infrared (SWIR) spectral analysis 410 of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and 411 Western Tharsis, Tasmania, and Highway-Reward, Queensland. Econ Geol 9:939–955. https://doi.org/10.2113/GSECONGEO.96.5.939

    Article  Google Scholar 

  • Hildebrand FA (1961) Hydrothermally altered rocks in eastern Puerto Rico. US Geol Surv Prof Pap

  • Hosseinjani M, Tangestani MH (2011) Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran. Int J Digit Earth 4:487–504. https://doi.org/10.1080/17538947.2010.550937

    Article  Google Scholar 

  • Huang ZQ (2013) Copper polymetallic alteration mineral mapping of Mingze in Tibet based on the short-wave infrared spectroscopy. Geological Society of China on S02 resource and environmental geophysical exploration theory and method technology, Beijing, China, pp. 287–293 (in Chinese).

  • Ishagh MM, Pour AB, Benali H, Idriss AM, Reyoug SS, Muslim AM, Hossain MS (2021) Lithological and alteration mapping using Landsat 8 and ASTER satellite data in the Reguibat Shield (West African Craton), North of Mauritania: implications for uranium exploration. Arab J Geosci 14. https://doi.org/10.1007/s12517-021-08846-x

  • Kalinowski A, Oliver S (2004) ASTER Mineral Index processing. Remote Sens Appl Geosci Australia

  • Kaur P, Zeh A, Chaudhri N, Eliyas N (2016) Unravelling the record of Archean crustal evolution of the Bundelkhand Craton, northern India using U-b zircon-monazite ages, Lu-Hf isotope systematics, and whole rock geochemistry of granitoids. Precambrian Res 281:384–413. https://doi.org/10.1016/j.precamres.2016.06.005

    Article  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  • Kokaly RF, Clark RN, Swayze GA, Livo KE, Hoefen TM, Pearson NC, Wise RA, Benzel WM, Lowers HA, Driscoll RL (2017) USGS Spectral Library Version 7: Data Series 1035. U.S. Geological Survey: Reston, VA, https://doi.org/10.3133/ds1035

  • Kruse FA (2012) Mapping surface mineralogy using imaging spectrometry. Geomorphology J. 137:41–56. https://doi.org/10.1016/j.geomorph.2010.09.032

    Article  Google Scholar 

  • Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41:1388–1400. https://doi.org/10.1109/TGRS.2003.812908

    Article  Google Scholar 

  • Kumar V, Yarrakula K (2017) Comparison of efficient techniques of hyper-spectral image preprocessing for mineralogy and vegetation studies. Indian J Geo-Mar Sci 46(5):1008–1021

    Google Scholar 

  • Kumar S, Raju M, Pandey A (2010) Magnetic susceptibility mapping of felsic magmatic lithounits in the central part of Bundelkhand Massif, Central India. J Geol Soc India 75:539–548. https://doi.org/10.1007/s12594-010-0046-4

    Article  Google Scholar 

  • Lee HJ, Kim IJ, Chi KH, Kim EJ, Jang DH (2009) Extraction model of non-metallic mine using multi-spectral ASTER SWIR data. J Korean Geomorphological Assoc 16:77–86 (In Korean with English abstract)

    Article  Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the Three Gorges area of the Yangtze River using ASTER imagery: Zigui-Badong. Geomorphology 61(1–2):171–187. https://doi.org/10.1016/j.geomorph.2003.12.004

    Article  Google Scholar 

  • Lv FJ, Hao YS, Shi J (2009) Alteration remote sensing anomaly extraction based on ASTER remote sensing data. Acta Geoscientica Sinica 30:271–276. https://doi.org/10.3321/j.issn:1006-3021.2009.02.017. (in Chinese with English abstract)

    Article  Google Scholar 

  • Magendran T, Sanjeevi S (2014) Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India. Int J Appl Earth Obs Geoinf 26:413–426

    Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic and argillic altered rock in the Zagros magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere 2:161–186. https://doi.org/10.1130/GES00044.1

    Article  Google Scholar 

  • Mars JC, Rowan LC (2011) ASTER spectral analysis and lithologic mapping of the Khanneshin carbonate volcano, Afghanistan. Geosphere 7:276–289. https://doi.org/10.1130/GES00630.1

    Article  Google Scholar 

  • Matthew MW, Adler-Golden S, Berk A, Felde G, Anderson G P, Gorodetzky D, Paswaters S, Shippert M (2002) Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data. Proc Appl Imag Pattern Recognit 157–163. https://doi.org/10.1117/12.499604

  • Mezned N, Abdeljaoued S, Boussema MR (2009) Unmixing based Landsat ETM+, and ASTER image fusion for hybrid multispectral image Analysis. Int J Appl Earth Obs Geoinf. https://doi.org/10.5772/8315

    Article  Google Scholar 

  • Mohan MR, Singh SP, Santosh M, Siddiqui MA, Balaram V (2012) TTG suite from the Bundelkhand Craton, Central India: geochemistry, petrogenesis and implications for Archean crustal evolution. J Asian Earth Sci 58:38–50. https://doi.org/10.1016/j.jseaes.2012.07.006

    Article  Google Scholar 

  • Mondal MEA, Goswami JN, Deomurari MP, Sharma KK (2002) Ion microprobe 207Pb/206Pb ages of zircon from the Bundelkhand massif, northern India: Implication for crustal evolution of Bundelkhand-Aravalli protocontinent. Precambrian Res 117:85–100. https://doi.org/10.1016/S0301-9268(02)00078-5

    Article  Google Scholar 

  • Ninomiya Y, Fu B (2005) Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99:127–139. https://doi.org/10.1016/j.rse.2005.06.009

    Article  Google Scholar 

  • Ninomiya Y (2003) A stabilized vegetation index and several mineralogic indices defiend for ASTER VNIR and SWIR data. Proc. IEEE 2003. Int Geoscience and Rem Sens Symp (IGARSS‟03) 3:1552–4. https://doi.org/10.1109/IGARSS.2003.1294172

  • Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee CW, Honarmand M (2019) Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud-Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens 11(5):495. https://doi.org/10.3390/rs11050495

    Article  Google Scholar 

  • Oner F, Tas A (2013) Geochemistry, mineralogy, and genesis of pyrophyllite deposits in the Pötürge Region (Malatya, Eastern Turkey). Geochem Int 51:140–154. https://doi.org/10.1134/s0016702913020079

    Article  Google Scholar 

  • Oskouei M, Busch W (2012) A selective combined classification algorithm for mapping alterations on ASTER data. Appl Geomat 4:47–54

    Article  Google Scholar 

  • Pati JK (2007) Evolution of Bundelkhand Craton. Episodes 43:1. https://doi.org/10.18814/epiiugs/2020/020004

    Article  Google Scholar 

  • Pati JK, Patel SC, Pruseth KL, Malviya VP, Arima M, Raju S, Pati P, Prakash K (2007) Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, Central India and their implications. J Earth Syst Sci 116:497–510. https://doi.org/10.1007/s12040-007-0046-y

    Article  Google Scholar 

  • Poormirzaee R, Oskouei M (2010) Use of spectral analysis for detection of alterations in ETM data, Yazd, Iran. Appl Geomat 2:147–154. https://doi.org/10.1007/s12518-010-0027-8

    Article  Google Scholar 

  • Portela B, Sepp MD, Frank JA, Ruitenbeek V, Hecker C, Dilles JH (2021) Using hyperspectral imagery for identification of pyrophyllite-muscovite intergrowths and alunite in the shallow epithermal environment of the Yerington porphyry copper district. Ore Geol Rev 131:104012. https://doi.org/10.1016/j.oregeorev.2021.104012

    Article  Google Scholar 

  • Pour AB, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42(430):1309–1323. https://doi.org/10.1007/s12517-017-3015-z

    Article  Google Scholar 

  • Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009

    Article  Google Scholar 

  • Pour AB, Hashim M, Park Y, Hong JK (2018) Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int 33:1281–1306. https://doi.org/10.1080/10106049.2017.1347207

    Article  Google Scholar 

  • Pour AB, Sekandari M, Rahmani O, Crispini L, Laufer A, Park Y, Hong JK, Pradhan B, Hashim M, Hossain MS, Muslim AM, Mehranzamir K (2021) Identification of phyllosilicates in the Antarctic environment using ASTER satellite data: case study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land. Remote Sens 13:1. https://doi.org/10.3390/rs13010038

    Article  Google Scholar 

  • Qiu F, Abdelsalam M, Thakkar P (2006) Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt. J African Earth Sci 44:169–180. https://doi.org/10.1016/j.jafrearsci.2005.10.009

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2010) Geology of India. 1. Geol. Society of India, Bangalore

  • Ramiz MM, Mondal MEA (2017) Petrogenesis of maficmagmatic enclaves of the Bundelkhand granitoids near Orchha, Central Indian shield: evidence or rapid crystallization. In: Halla J, Whitehouse M J, Ahmad T, Bagai Z (eds) Crust-mantle Interactions and granitoid diversification: insights from ArchaeanCratons. Geological Society of London, Special Publications 449:123–157

  • Ramiz MM, Mondal MEA, Farooq SH (2018) Geochemistry of ultramafic-mafic rocks of the Madawara Ultramafic Complex in the southern part of the Bundelkhand Craton, Central Indian Shield: Implications for mantle sources and geodynamic setting. Geol J 1–23. https://doi.org/10.1002/gj.3290

  • Rani K, Guha A, Mondal S, Pal SK, Vinod Kumar K (2018) ASTER multispectral bands, ground magnetic data, ground spectroscopy and space-based EIGEN6C4 gravity data model for identifying potential zones for gold sulphide mineralization in Bhukia, Rajasthan, India. J Appl Geophy. https://doi.org/10.1016/j.jappgeo.2018.10.001

    Article  Google Scholar 

  • Rao JM, Poornachandra Rao GVS, Widdowson M, Kelley SP (2005) Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, Central India. Curr Sci 88:3

    Google Scholar 

  • Ray L, Nagaraju P, Singh SP, Ravi G, Roy S (2016) Radioelemental, petrological and geochemical characterization of the Bundelkhand craton, Central India: implication in the Archean geodynamic evolution. Int J Earth Sci 105:1087–1107. https://doi.org/10.1007/s00531-015-1229-4

    Article  Google Scholar 

  • Reyes AG (1991) Mineralogy, distribution and origin of acid alteration in Philippine geothermal systems. Geol Surv Japan Rep 277:59–65

    Google Scholar 

  • Roday PP, Diwan P, Singh S (1995) A kinematics model of emplacement of quartz reef and subsequence deformation pattern in the central Indian Bundelkhand batholith. Proc Indian Acad Sci (Earth Planet Sci) 104:465–488

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens Environ 84:350–366. https://doi.org/10.1016/S0034-4257(02)00127-X

  • Rowan LC, Mars JC (2005) Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Remote Sens. Environ 99:105–126. https://doi.org/10.1016/j.rse.2004.11.021

    Article  Google Scholar 

  • Rowan LC, Goetz AFH, Ashley RP (1977) Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophys 42:522–535. https://doi.org/10.1190/1.1440723

    Article  Google Scholar 

  • Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183. https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  • Sabol DE, Donald E, Adams JB, Smith MO (1992) Quantitative subpixel spectral detection of targets in multispectral images. Geophys Res Atmos 97(E2). https://doi.org/10.1029/91JE03117

  • San BT, Suzen ML (2010) Evaluation of different atmospheric correction algorithms for Eo-1 Hyperion Imagery. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII:392–397

    Google Scholar 

  • Sekandari M, Masoumi I, Pour AB, Muslim AM, Hossain MS, Misra A (2020) ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization. Geocarto Int 37. https://doi.org/10.1080/10106049.2020.1790676

  • Sharma KK, Rahman A (2000) The early Archaean-Paleoproterozoic crustal growth of the Bundelkhand craton northern Indian shield. In: Deb M (ed) Crustal Evolution and Metallogeny in the Northwestern Indian Shield. Narosa Publishing House, New Delhi, pp 51–72. https://doi.org/10.1007/s12040-018-0945-0

    Chapter  Google Scholar 

  • Shirazi A, Hezarkhani A, Pour AB, Shirazy A, Hashim M (2022) Neuro-Fuzzy-AHP (NFAHP) Technique for Copper Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and geological datasets in the Sahlabad Mining Area, East Iran. Remote Sens 14(21):5562. https://doi.org/10.3390/rs14215562

    Article  Google Scholar 

  • Simon AH (2018) Sputter processing. In: Handbook of thin film deposition (Fourth edn), pp 195–230

  • Singh SP (2012) Archean geology of Bundelkhand Craton, Central India: an overview. Gondwana Geol Mag 13:125–140

    Google Scholar 

  • Singh SP, Bhattacharya AR (2017) N-S crustal shear system in the Bundelkhand massif: a unique crustal evolution signature in the northern Indian peninsula. J Earth Syst Sci 126:121. https://doi.org/10.1007/s12040-017-0900-5

    Article  Google Scholar 

  • Singh SP, Dwivedi SB (2015) High grade metamorphism in the Bundelkhand Massif and its implications on Mesoarchean crustal evolution in Central India. J Earth Syst Sci 124:197–211. https://doi.org/10.1007/s12040-014-0516-y

    Article  Google Scholar 

  • Sisodiya DS (1980) Report on the investigation for pyrophyllite and diaspore occurrences in Tikamgarh district, M.P. Geological Survey of India. Unpublished Report

  • Son YS, Kang MK, Yoon WJ (2014) Pyrophyllite mapping in the Nohwa deposit, Korea, using ASTER remote sensing data. Geosci J 18(3):295–305. https://doi.org/10.1007/s12303-014-0007-9

    Article  Google Scholar 

  • Sultan M, Arvidson RE, Sturchio NC, Guinness EA (1987) Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geol Soc Am Bull 99:748–762. https://doi.org/10.1130/0016-7606(1987)99%3c748:LMIARW%3e2.0.CO;2

    Article  Google Scholar 

  • Sun Y, Tian S, Di B (2017) Extracting mineral alteration information using WorldView-3 data. Geosci Front 8:1051–1062. https://doi.org/10.1016/j.gsf.2016.10.008

    Article  Google Scholar 

  • Takagi T, Koh SM, Moon-Young K, Kazuki N, Sadahisa S (2000) Geology and hydrothermal alteration of the Milyang pyrophyllite deposit, Southeast Korea. Resour Geol 50:243–256. https://doi.org/10.1111/j.1751-3928.2000.tb00073.x

    Article  Google Scholar 

  • Tun MM, Warmada IW, Idrus A, Harijoko A, Furqan RA, Watanabe K (2015) Characteristics of hydrothermal alteration in Cijulang area, West Java, Indonesia. J Se Asian Appl Geol 7(1):1–9

    Google Scholar 

  • Upadhyay R (2012) Mineral abundance mapping using Hyperion dataset in Udaipur, India. in 14th Annual International Conference and Exhibition on Geospatial- Information Technology, pp. 1–8

  • Van der Meer FD, De Jong SM (2001) Imaging spectrometry: basic principles and prospective applications, In: Imaging spectrometry: basic analytical techniques; Springer-Verlag, Berlin, Germany, pp. 15–61

  • Welch R, Jordan T, Lang H, Murakami H (1998) ASTER as a source for topographic data in the late 1990’s. IEEE Trans Geosci Remote Sens 36:1282±1289. https://doi.org/10.1109/36.701078

    Article  Google Scholar 

  • Will P, Luders V, Wemmer K, Gilg A (2016) Pyrophyllite formation in the thermal aureole of a hydrothermal system in the Lower Saxony Basin, Germany. Geofluids 16:349–363. https://doi.org/10.1111/GFL.12154

    Article  Google Scholar 

  • Yamaguchi Y, Kahle AB, Tsu H, Kawakami T, Pniel M (1998) An overview of ASTER. IEEE Trans Geosci Remote Sens 36:1062–1071. https://doi.org/10.1109/36.700991

    Article  Google Scholar 

  • Yang ZM, Hou ZQ, Yang ZS (2012) Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: a case study of Niancun ore district, Tibet. Miner Depos 31:699–717 ((in Chinese with English abstract))

    Google Scholar 

  • Yousefi T, Aliyari F, Abedini A, Calagari AA (2018) Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: a case study from Zarshuran Carlin-type gold deposit, NW Iran. Arab J Geosci 11(482). https://doi.org/10.1007/s12517-018-3822-x

  • Zamyad M, Afzal P, Pourkermani M, Nouri R, Jafari MR (2019) Determination of hydrothermal alteration zones using remote sensing methods in Tirka Area, Toroud, NE Iran. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-019-01032-3(0123456789(),-volV)(0123456789)

    Article  Google Scholar 

  • Zhang XF, Pazner M, Duke N (2007) Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J Photogramm Remote Sens 62:271–282

    Article  Google Scholar 

  • Zhang SY, Zhang HF (2020) Genesis of the Baiyun pyrophyllite deposit in the central Taihang Mountain, China: implications for gold mineralization in wall rocks. Ore Geol Rev 120:103313. https://doi.org/10.1016/j.oregeorev.2020.103313

Download references

Acknowledgements

The authors would like to thank the Geological Survey of India, Central Region Nagpur. The authors are extremely grateful to Shri Godise Vidyasagar, Retired ADG and HOD, GSI, CR, Nagpur, and Shri Rajeswar Paul, Retired Dy DG and RMH-I, for their valuable suggestions, guidance and supervision to carry out the entire course of investigation for the execution of the assigned field season program. The authors also express sincere thanks to Dr. Sanjay Das, DDG, for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

DS performed research, field work, analyzed, interpreted data, generated the figures and prepared the manuscript. TV executed field work and research. PP performed field valediction and supervision of the project. PB supervised the work and scrutinized the manuscript. RJP carried out the field work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debjani Sarkar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Vyas, T.V., Pankaj, P. et al. Characterization of ASTER spectral bands for mapping of Pyrophyllite of hydrothermal alteration zones in and around Tikamgarh, Madhya Pradesh. Arab J Geosci 16, 439 (2023). https://doi.org/10.1007/s12517-023-11547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11547-2

Keywords

Navigation