Skip to main content

Advertisement

Log in

Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Tonalite–trondhjemite–granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite–annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have \(\hbox {X}_{\mathrm{K}}\) ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite–trondhjemite–granodiorite gneiss samples have high \(\hbox {SiO}_{2}\) (64.17–74.52 wt%), \(\hbox {Na}_{2}\hbox {O}\) (3.11–5.90 wt%), low Mg# (30–47) and HREE contents, with moderate \((\hbox {La/Yb})_{\mathrm{CN}}\) values (14.7–33.50) and Sr/Y ratios (4.85–98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high \(\hbox {SiO}_{2}\) (64.72–76.73 wt%), \(\hbox {K}_{2}\hbox {O}\) (4.31–5.42), low \(\hbox {Na}_{2}\hbox {O}\) (2.75–3.31 wt%), Mg# (24–40) and HREE contents, with moderate to high \((\hbox {La/Yb})_{\mathrm{CN}}\) values (9.26–29.75) and Sr/Y ratios (1.52–24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59–3.33 and 3.2–3.0 Ga) and reworking (at 2.5–1.9 Ga) occurred in the Bundelkhand craton from Archaean to Paleoproterozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Abbott D and Mooney W 1995 The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth; Rev. Geophys. 33(S1) 231–242.

    Article  Google Scholar 

  • Abdel-Rahman A F M 1994 Nature of biotites from alkaline, calc-alkaline and peraluminous magmas; J. Petrol. 35 525–541.

    Article  Google Scholar 

  • Absar N, Raza M, Roy M, Naqvi S M and Roy A K 2009 Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group; Precamb. Res. 168(3) 313–329.

    Article  Google Scholar 

  • Arndt N T 2013 The formation and evolution of the continental crust; Geochem. Perspec. 2(3) 405.

    Article  Google Scholar 

  • Atherton M P and Petford N 1993 Generation of sodium-rich magmas from newly underplated basaltic crust; Nature 362 144–146.

    Article  Google Scholar 

  • Balaram V, Saxena V K, Manikyamba C and Ramesh S L 1990 Determination of rare earth elements in Japanese rock standards by inductively coupled plasma mass spectrometry; Atomic Spectroscopy 11(1) 19–23.

    Google Scholar 

  • Barker F 1979 Trondhjemites: Definition, environment and hypotheses of origin; In: Trondhjemites, Dacites and Related Rocks (ed.) Barker F; Elsevier, Amsterdam, pp. 1–12.

  • Basu A K 1986 Geology of parts of the Brundelkhand granite massif central India; Rec. Geol. Surv. India 117(2) 61–124.

    Google Scholar 

  • Basu A K 2001 Some characteristics of the Precambrian crust in the northern part of central India; Geol. Surv. India Spec. Publ. 55 181–204.

    Google Scholar 

  • Bhattacharya A R and Singh S P 2013 Proterozoic crustal scale shearing in the Bundelkhand massif with special reference to quartz reefs; J. Geol. Soc. India 82(5) 474.

    Article  Google Scholar 

  • Blundy J D and Holland T J B 1990 Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer; Contrib. Mineral. Petrol. 104 208–224.

    Article  Google Scholar 

  • Champion D C and Sheraton J W 1997 Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes; Precamb. Res. 83(1–3) 109–132.

    Article  Google Scholar 

  • Champion D C and Smithies R H 1999 Archaean granites of the Yilgarn and Pilbara cratons, western Australia: Secular changes; In: The Origin of Granites and Related Rocks – Fourth Hutton Symposium Abstracts Doc (ed.) Barbarin B, BRGM 290, 137p.

  • Condie K C 2005 TTGs and adakites: Are they both slab melts? Lithos 80(1) 33–44.

    Article  Google Scholar 

  • Crawford A R 1970 The Precambrian geochronology of Rajasthan and Bundelkhand, northern India; Can. J. Earth Sci. 7(1) 91–110.

    Article  Google Scholar 

  • Deb M, Thorpe R and Krstic D 2002 Hindoli group of rocks in the eastern fringe of the Aravalli–Delhi Orogenic Belt – Archean Secondary Greenstone Belt or Proterozoic supracrustals? Gondwana Res. 5(4) 879–883.

    Article  Google Scholar 

  • Deer W A, Howie R A and Zussman J 1992 An introduction to the rock forming minerals; ELBS Publication, UK, 696p.

  • Drummond M S and Defant M J 1990 A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons; J. Geophys. Res.: Solid Earth 95(B13) 21503–21521.

    Article  Google Scholar 

  • Ernst R and Bleeker W 2010 Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present; Can. J. Earth Sci. 47(5) 695–739.

    Article  Google Scholar 

  • Ernst R E, Wingate M T D, Buchan K L and Li Z X 2008 Global record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents; Precamb. Res. 160(1) 159–178.

    Article  Google Scholar 

  • Ghosh J G 2004 3.56 Ga tonalite in the central part of the Bastar craton, India: Oldest Indian date; J. Asian Earth Sci. 23(3) 359–364.

    Article  Google Scholar 

  • Foley S 2008 A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction; Geol. Soc. Am. Spec. Papers 440 31–50.

    Google Scholar 

  • Foley S, Tiepolo M and Vannucci R 2002 Growth of early continental crust controlled by melting of amphibolite in subduction zones; Nature 417(6891) 837–840.

    Article  Google Scholar 

  • Haldar D and Ghosh R N 2000 Eruption of Bijawar lava: An example of Precambrian volcanicity under stable cratonic conditions; Spec. Publ. Geol. Surv. India 57 151–170.

    Google Scholar 

  • Halla J, van Hunen J, Heilimo E and Hölttä P 2009 Geochemical and numerical constraints on Neoarchean plate tectonics; Precamb. Res. 174(1) 155–162.

    Article  Google Scholar 

  • Hammerstrom J M and Zen E-An 1986 Aluminium in hornblende: An empirical igneous geobarometer; Am. Mineral. 71 1297–1313.

    Google Scholar 

  • Heilimo E, Halla J and Hölttä P 2010 Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland); Lithos 115(1) 27–39.

    Article  Google Scholar 

  • Hollister L S, Grissom G C, Peters E K, Stowell H H and Sisson V B 1987 Confirmation of the empirical correlation of al in hornblende with pressure of solidification of clac–alkaline plutons; Am. Mineral. 72 231–239.

    Google Scholar 

  • Huang H, Niu Y, Nowell G, Zhao Z, Yu X, Zhu D C, Mo X and Ding S 2014 Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism; Chem. Geol. 370 1–18.

    Article  Google Scholar 

  • Irvine T N and Baragar W R A 1971 A guide to the geochemical classification of the common volcanic rocks; Can. J. Earth Sci. 8 523–548.

    Article  Google Scholar 

  • Jackson M D, Gallagher K, Petford N and Cheadle M J 2005 Towards a coupled physical and chemical model for tonalite–trondhjemite–granodiorite magma formation; Lithos 79(1) 43–60.

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Capdevila R 2006 2.61 Ga K-rich granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints; Precamb. Res. 150(1) 1–26.

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J J and Fanning C M 2015 Paleo-to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes; Precamb. Res. 268 295–322.

    Article  Google Scholar 

  • Johnson T E, Brown M, Gardiner N J, Kirkland C L and Smithies R H 2017 Earth’s first stable continents did not form by subduction; Nature 543 239–242.

    Article  Google Scholar 

  • Joshi K B, Bhattacharjee J, Rai G, Halla J, Ahmad T, Kurhila M, Heilimo E and Choudhary A K 2016 The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, central India; Geol. Soc. London Spec. Publ. 449 123–157.

    Article  Google Scholar 

  • Kaur P, Zeh A and Chaudhri N 2014 Characterisation and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand craton, northern India; Precamb. Res. 255 236–244.

    Article  Google Scholar 

  • Kaur P, Zeh A, Chaudhri N and Eliyas N 2016 Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids; Precamb. Res. 281 384–413.

    Article  Google Scholar 

  • Kay R W and Kay S M 1993 Delamination and delamination magmatism; Tectonophys. 219(1–3) 177–189.

    Article  Google Scholar 

  • Kovalenko A, Clemens J D and Savatenkov V 2005 Petrogenetic constraints for the genesis of Archaean sanukitoid suites: Geochemistry and isotopic evidence from Karelia, Baltic Shield; Lithos 79(1) 147–160.

    Article  Google Scholar 

  • Kumar S, Yi K, Raju K, Pathak M, Kim N and Lee T H 2011 SHRIMP U–Pb geochronology of felsic magmatic lithounits in the central part of Bundelkhand Craton, central India; In: 7th Hutton Symposium on Granites and Related Rocks, Avila, Spain, 83.

  • Laurent O, Martin H, Moyen J F and Doucelance R 2014 The diversity and evolution of late-Archean granitoids: Evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga; Lithos 205 208–235.

    Article  Google Scholar 

  • Leake B E, Woolley A R, Arps C E S and Birch W D 1997 Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new mineral names; Min. Mag. 61 295–321.

    Article  Google Scholar 

  • Lobach-Zhuchenko S B, Rollinson H, Chekulaev V P, Savatenkov V M, Kovalenko A V, Martin H, Guseva N S and Arestova N A 2008 Petrology of a Late Archaean, highly potassic, sanukitoid pluton from the Baltic Shield: Insights into Late Archaean mantle metasomatism; J. Petrol. 49(3) 393–420.

    Article  Google Scholar 

  • Macpherson C G, Dreher S T and Thirlwall M F 2006 Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines; Earth Planet. Sci. Lett. 243(3) 581–593.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120(3–4) 223–253.

    Article  Google Scholar 

  • Malviya V P, Arima M, Pati J K and Kaneko Y 2004 First report of metamorphosed pillow lava in central part of Bundelkhand craton – an island arc setting of possible late Archaean age; Gondwana Res. 7 1338–1340.

    Google Scholar 

  • Malviya V P, Arima M and Kaneko Y 2006 Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: Subduction related volcanism in the Archean Bundelkhand craton, central India; J. Min. Petrol. Sci. 101(4) 199–217.

    Article  Google Scholar 

  • Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; GSA Bull. 101 635–643.

    Article  Google Scholar 

  • Manya S, Maboko M A H and Nakamura E 2007 Geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma–Mara Greenstone Belt, Northern Tanzania: Possible evidence for Neoarchaean ridge subduction? Precamb. Res. 159 241–259.

    Article  Google Scholar 

  • Martin H 1999 Adakitic magmas: Modern analogues of Archaean granitoids; Lithos 46(3) 411–429.

    Article  Google Scholar 

  • Martin H and Moyen J F 2005 The Archaean–Proterozoic transition: Sanukitoid and Closepet type magmatism; Min. Soc. Poland Spec. Papers 26 57–67.

    Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Toft J B and Pennec J L L 2014 Why Archean TTG cannot be generated by MORB melting in subduction zones; Lithos 198–199 1–13.

    Article  Google Scholar 

  • Meert J G, Pandit M K, Pradhan V R and Kamenov G 2011 Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, peninsular India; Gondwana Res. 20(2) 335–343.

    Article  Google Scholar 

  • Miller C F, McDowell S M and Mapes R W 2003 Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance; Geology 31(6) 529–532.

    Article  Google Scholar 

  • Mohan M R, Singh S P, Santosh M, Siddiqui M A and Balaram V 2012 TTG suite from the Bundelkhand Craton, central India: Geochemistry, petrogenesis and implications for Archean crustal evolution; J. Asian Earth Sci. 58 38–50.

    Article  Google Scholar 

  • Mondal M E A, Goswami J N, Deomurari M P and Sharma K K 2002 Ion microprobe \(^{207}\) \(\text{ Pb }/^{206}\text{ Pb }\) ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand–Aravalli protocontinent; Precamb. Res. 117(1) 85–100.

    Article  Google Scholar 

  • Mondal M E A, Sharma K K, Rahman A and Goswami J N 1998 Ion microprobe \(^{207}\text{ Pb }/^{206}\)Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: Evidence for Archaean components; Curr. Sci. 74 70–74.

    Google Scholar 

  • Mondal M E A and Zainuddin S M 1996 Evolution of the Archean–Paleoproterozoic Bundelkhand Massif, central India – evidence from granitoid geochemistry; Terra Nova 8(6) 532–539.

    Article  Google Scholar 

  • Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S and Ke S 2008 Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet; Chem. Geol. 250(1) 49–67.

    Article  Google Scholar 

  • Moyen J F 2009 High Sr/Y and La/Yb ratios: The meaning of the ‘adakitic signature’; Lithos 112(3) 556–574.

    Article  Google Scholar 

  • Moyen J F 2011 The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth; Lithos 123(1) 21–36.

    Article  Google Scholar 

  • Moyen J F and Martin H 2012 Forty years of TTG research; Lithos 148 312–336.

    Article  Google Scholar 

  • Moyen J F, Martin H, Jayananda M and Auvray B 2003 Late Archaean granites: A typology based on the Dharwar Craton (India); Precamb. Res. 127(1) 103–123.

    Article  Google Scholar 

  • Moyen J F, Nédélec A, Martin H and Jayananda M 2003 Syntectonic granite emplacement at different structural levels: The Closepet granite, South India; J. Struct. Geol. 25(4) 611–631.

    Article  Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian Geology of India; Oxford University Press, New York, 223p.

    Google Scholar 

  • Niu Y L, Mo X, Dong G, Zhao Z, Hou Z, Zhou S and Ke S 2007 Continental collision zones are primary sites of net continental crustal growth: Evidence from the Linzizong volcanic succession in southern Tibet; EOS Trans. Am. Geophys. Union 88(52) (Fall Meeting, Supplement Abstract V34A-01).

  • Niu Y and O’Hara M J 2009 MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle; Lithos 112(1) 1–17.

    Article  Google Scholar 

  • Niu Y, Zhao Z, Zhu D C and Mo X 2013 Continental collision zones are primary sites for net continental crust growth – a testable hypothesis; Earth-Sci. Rev. 127 96–110.

    Article  Google Scholar 

  • Nutman A P, Friend C R, Horie K and Hidaka H 2007 The Itsaq gneiss complex of southern west greenland and the construction of eoarchaean Crust at convergent pate boundaries; Dev. Precamb. Geol. 15 187–218.

    Article  Google Scholar 

  • O’connor J T 1965 A classification for quartz-rich igneous rocks based on feldspar ratios; US Geol. Sur. Professional Paper B 525 79–84.

    Google Scholar 

  • Oliveria M A, Dall’Agnol R and Scaillet B 2010 Petrological constraints on crystallization conditions of Mesoarchean Sanukitoid rocks, southeastern Amazonian Craton, Brazil; J. Petrol. 51 2121–2148.

  • Pati J K 1999 Specialized thematic study of older enclaves (migmatites, gneisses and supracrustals) within the Bundelkhand Granitoid Complex (BUGC); Geol. Surv. India, (NR), Progress Report (FST 1997–1998), 25.

  • Pati J K, Patel S C, Pruseth K L, Malviya V P, Arima M, Raju S, Pati P and Prakash K 2007 Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, central India and their implications; J. Earth Syst. Sci. 116(6) 497–510.

    Article  Google Scholar 

  • Pati J K, Raju S, Mamgain V D and Shanker R 1997 Gold mineralization in parts of Bundelkhand granitoid complex (BGC); Geol. Soc. India 50(5) 601–606.

    Google Scholar 

  • Patiño-Douce A E 1996 Effects of pressure and \(\text{ H }_{2}\text{ O }\) content on the composition of primary crustal melts; Trans. R. Soc. Edinburgh: Earth Sci. 87 11–21.

    Article  Google Scholar 

  • Patiño-Douce A E 2005 Vapour absent melting of tonalite at 15–32 kbar; J. Petrol. 46 275–290.

    Article  Google Scholar 

  • Patiño-Douce A E 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Understanding granites: Integrating new and classical techniques (eds) Castro A, Fernandez C and Vigneressese J L, Geol. Soc. London Spec. Publ. 168 55–75.

  • Pearce J A, Harris B W and Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Article  Google Scholar 

  • Pearson D G, Parman S W and Nowell G M 2007 A link between large mantle melting events and continent growth seen in osmium isotopes; Nature 449(7159) 202–205.

    Article  Google Scholar 

  • Peccerillo A and Taylor S R 1976 Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey; Contrib. Mineral. Petrol. 58 63–81.

    Article  Google Scholar 

  • Pradhan V R, Meert J G, Pandit M K, Kamenov G, Gregory L C and Malone S J 2009 India’s changing place in global Proterozoic reconstructions: A review of geochronologic constraints and Paleomagnetic poles from the Dharwar, Bundelkhand and Marwar cratons; J. Geodyn. 50(3–4) 224–242.

    Google Scholar 

  • Pradhan V R, Meert J G, Pandit M K, Kamenov G and Mondal M E A 2012 Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleographic reconstructions; Precamb. Res. 198–199 51–76.

    Article  Google Scholar 

  • Purohit K K, Mukherjee P K, Saini N K, Khanna P P and Rathi M S 2006 Geochemical Survey of stream sediments from upper parts of Alaknanda, Mandakini, Bhilangana and Bhagirathi Catchments, Garhwal Himalaya; Himalayan Geol. 27(1) 31–39.

    Google Scholar 

  • Radhakrishna T, Chandra R, Srivastava A K and Balasubramonian G 2013 Central/eastern Indian Bundelkhand and Bastar cratons in the Palaeoproterozoic supercontinental reconstructions: A palaeomagnetic perspective; Precamb. Res. 226 91–104.

    Article  Google Scholar 

  • Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Geological Society of India Publication , 428p.

  • Rao J M, Rao G P, Widdowson M and Kelley S P 2005 Evolution of Proterozoic mafic dyke swarms of the Bundelkhand granite massif, central India; Curr. Sci. 88(3) 502–506.

    Google Scholar 

  • Rapp R P, Watson E B and Miller C F 1991 Partial melting of amphibolites/eclogite and the origin of Archean trondhjemites and tonalities; Precamb. Res. 51(1–4) 1–25.

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D and Applegate G S 1999 Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa; Chem. Geol. 160(4) 335–356.

    Article  Google Scholar 

  • Roy A B and Kröner A 1996 Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, northwestern Indian shield; Geol. Mag. 133(03) 333–342.

    Article  Google Scholar 

  • Rutter M J and Wyllie P J 1988 Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust; Nature 331(6152) 159–160.

    Article  Google Scholar 

  • Rushmer T and Jackson M 2008 Impact of melt segregation on tonalite–trondhjemite–granodiorite (TTG) petrogenesis; Trans. Roy. Soc. Edinburgh: Earth Sci. 97(04) 325–336.

    Article  Google Scholar 

  • Saha L, Pant N C, Pati J K, Upadhyay D, Berndt J, Bhattacharya A and Satynarayanan M 2011 Neoarchean high-pressure margarite–phengitic muscovite–chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand craton, north central India; Contrib. Mineral. Petrol. 161(4) 511–530.

    Article  Google Scholar 

  • Saha L, Frei D, Gerdes A, Pati J K, Sarkar S, Patole V, Bhandari A and Nasipuri P 2016 Crustal geodynamics from the Archaean Bundelkhand Craton, India: Constraints from zircon U–Pb–Hf isotope studies; Geol. Mag. 153(01) 179–192.

    Article  Google Scholar 

  • Saini N K, Mukherjee P K, Rathi M S, Khanna P P and Purohit K K 1998 A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya; J. Geol. Soc. India 52 603–606.

    Google Scholar 

  • Saini N K, Mukherjee P K, Rathi M S and Khanna P P 2000 Evaluation of energy-dispersive X-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets; X-Ray Spectrometry 29(2) 166–172.

    Article  Google Scholar 

  • Saini N K, Mukherjee P K, Khanna P P and Purohit K K 2007 A proposed amphibolite reference rock sample (AM-H) from Himachal Pradesh; J. Geol. Soc. India 69 799–802.

    Google Scholar 

  • Sarkar A, Paul D K and Potts P J 1996 Geochronology and geochemistry of the Mid-Archaean trondhjemitic gneisses from the Bundelkhand craton, central India; Recent Res. Geol. 16 76–92.

    Google Scholar 

  • Sarkar A, Trivedi J R, Gopalan K, Singh P N, Das A K and Paul D K 1984 Rb–Sr geochronology of Bundelkhand granitic complex in the Jhansi–Babina–Talbehat sector, UP, India; Indian J. Earth Sci., CEISM Seminar Volume, 64–72.

  • Sarkar A, Ghosh S, Singhai R K and Gupta S N 1997 Rb–Sr geochronology of the Dargawan sill: Constraint on the age of the type Bijawar sequence of central India; In: International Conference on Isotopes in Solar System 5 100–101.

    Google Scholar 

  • Sharma K K 1998 Geological evolution and crustal growth of Bundelkhand craton and its relict in the surrounding regions, North Indian Shield; In: The Indian Precambrian, Paliwal B S (ed). Scientific Publishers, Jodhpur, 1593 33–43.

  • Sharma R S 2009 Cratons of the Indian shield. Springer Berlin Heidelberg, pp. 41–115.

    Google Scholar 

  • Sharma K K and Rahman A 2000 The Early Archaean–Paleoproterozoic crustal growth of the Bundelkhand craton, northern Indian shield; In: Crustal Evolution and Metallogeny in the Northwestern Indian Shield, Narosa Publishing House, New Delhi, pp. 51–72.

  • Sharma K K and Rahman A 1995 Occurrence and petrogenesis of Loda Pahar trondhjemitic gneiss from Bundelkhand craton, central India: Remnant of an early crust; Curr. Sci. 69 613–617.

    Google Scholar 

  • Singh S P, Singh M M, Srivastava G S and Basu A K 2007 Crustal evolution in Bundelkhand area, central India; J. Himal. Geol. 28(2) 79–101.

    Google Scholar 

  • Singh V K and Slabunov A 2015 The central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: Geology, composition, and geochronology of supracrustal rocks; Intern. Geol. Rev. 57(11–12) 1349–1364.

    Article  Google Scholar 

  • Singh V K and Slabunov A 2016 Two types of Archaean supracrustal belts in the Bundelkhand craton, India: Geology, geochemistry, age and implication for craton crustal evolution; J. Geol. Soc. India 88(5) 539–548.

    Article  Google Scholar 

  • Sizova E, Gerya T and Brown M 2014 Contrasting styles of Phanerozoic and Precambrian continental collision; Gondwana Res. 25(2) 522–545.

    Article  Google Scholar 

  • Sizova E, Gerya T, Stüwe K and Brown M 2015 Generation of felsic crust in the Archean: A geodynamic modeling perspective; Precamb. Res. 271 198–224.

    Article  Google Scholar 

  • Skjerlie K P and Johnston A D 1993 Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites; J. Petrol. 34(4) 785–815.

    Article  Google Scholar 

  • Smithies R H 2000 The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoicadakite; Earth Planet. Sci. Lett. 182(1) 115–125.

    Article  Google Scholar 

  • Smithies R H and Champion D 2000 The archaean high-Mg diorite suite: Links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth; J. Petrol. 41 1653–1671

    Article  Google Scholar 

  • Smithies R H, Champion D C and Van Kranendonk M J 2009 Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt; Earth Planet. Sci. Lett. 281(3) 298–306.

    Article  Google Scholar 

  • Smithies R H 2002 Archaean boninite-like rocks in an intracratonic setting; Earth Planet. Sci. Lett. 197(1) 19–34.

    Article  Google Scholar 

  • Speer J A 1984 Micas in igneous rocks; In: Mineralogical, Society of America, Rev. Miner. 13 299–356.

    Google Scholar 

  • Stein M and Hofmann A W 1994 Mantle plumes and episodic crustal growth, Nature 372(6501) 63–68.

    Article  Google Scholar 

  • Sun S S and McDonough W S 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42(1) 313–345.

    Article  Google Scholar 

  • Sylvester P J 1994 Archean granite plutons; Dev. Precamb. Geol. 11 261–314.

    Article  Google Scholar 

  • Taylor S R 1967 The origin and growth of continents; Tectonophys. 4(1) 17–34.

    Article  Google Scholar 

  • Taylor S R 1977 Island arc models and the composition of the continental crust; In: Island arcs, deep sea trenches and back-arc basins (ed.) M Talwani, American Geophysical Union, Washington, DC, pp. 325–335.

  • Thompson A B 1996 Fertility of crustal rocks during anatexis; Trans. Roy. Soc. Edinburgh: Earth Sci. 87 1–10.

    Article  Google Scholar 

  • Upadhyay D, Chattopadhyay S, Kooijiman E, Mezger K and Berndt J 2014 Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite suite from the Singhbhum Craton, eastern India; Precamb. Res. 252 180–190.

    Article  Google Scholar 

  • Verma S K, Verma S P, Oliveira E P, Singh V K and Moreno J A 2016 LA-SF-ICP-MS zircon U–Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India; J. Asian Earth Sci. 118 125–137.

    Article  Google Scholar 

  • Wang Q, McDermott F, Xu J F, Bellon H and Zhu Y T 2005 Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting; Geology 33(6) 465–468.

    Article  Google Scholar 

  • Watkins J M, Clemens J D and Treloar P J 2007 Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6–1.2 GPa; Contrib. Mineral. Petrol. 154(1) 91–110.

    Article  Google Scholar 

  • Watson E B and Harrison T M 1983 Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types; Earth Planet. Sci. Lett. 64(2) 295–304.

    Article  Google Scholar 

  • Wolf M B and Wyllie P J 1994 Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time; Contrib. Mineral. Petrol. 115(4) 369–383.

    Article  Google Scholar 

  • Zhao G, Wilde S A, Cawood P A and Sun M 2001 Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution; Precamb. Res. 107(1) 45–73.

    Article  Google Scholar 

Download references

Acknowledgements

Ashima Saikia acknowledges R&D grant for promotion of research, University of Delhi and CSIR Grant vide Project No. 24(0317)/12/EMR-II for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Saikia.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, H., Saikia, A. & Ahmad, T. Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone. J Earth Syst Sci 127, 44 (2018). https://doi.org/10.1007/s12040-018-0945-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-0945-0

Keywords

Navigation