Skip to main content

Advertisement

Log in

Modelling landslides in the Lesser Himalaya region using geospatial and numerical simulation techniques

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Himalayan region has always been hard hit by landslides, posing a serious threat to local communities and development activities. Taking cues from empirical and ancillary data from the deadliest landslide in recent times, the present study used an integrated approach to model landslide hazard in the Lesser Himalayan region, especially the Ukhimath tehsil of the Rudraprayag District, Uttarakhand, India. This holistic study involved mapping of a detailed landslide inventory, a hazard and risk analysis, and numerical simulations to model debris flow. Using the detailed landslide inventory (~ 505 landslides), this study produced a landslide hazard map using a bivariate statistical technique (frequency ratio) with 12 data layers: slope, aspect, relative relief, distance to linear features, geology, soil depth and soil erosion, geomorphology, vegetation, and land use/land cover (LULC). This was subsequently validated with receiver operating characteristic curve (ROC) technique which revealed that 89% of the observed landslides occurred in the predicted high-hazard zones which comprised 10% of the total, implying good accuracy. Despite the ubiquitous risk of landslides across the entire area, the final hazard map revealed that only 24% of the area was in a high-to-very-high-hazard zone, whereas a risk analysis revealed that 11% of the total area was located in the very-high-risk zone. Targeting a high hazard zone, four basic parameters: height, velocity, pressure, and momentum of a debris flow were derived using numerical modelling, incorporating the Voellmy friction law in a physics-based model. This study could provide valuable insights for structural and non-structural measures to protect life and property and strengthen landslide mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the findings of this article is available upon request to the principal author. However, it is important to note that the availability of satellite imagery is subject to the decision of the Indian Institute of Remote Sensing.

References

  • Achour Y, Saidani Z, Touati R, Pham QB, Pal SC, Mustafa F, Balik Sanli F (2021) Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality. Environ Earth Sci 80(17):1–20

    Article  Google Scholar 

  • Ahmed B (2015) Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 12:1077–1095

    Article  Google Scholar 

  • Al-Najjar HH, Pradhan B (2021) Spatial landslide susceptibility assessment using machine-learning techniques assisted by additional data created with generative adversarial networks. Geosci Front 12:625–637. https://doi.org/10.3390/rs13224521

    Article  Google Scholar 

  • Arabameri A, Rezaei K, Pourghasemi HR, Lee S, Yamani M (2018) GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environ Earth Sci 77:628

    Article  Google Scholar 

  • Arattano M, Franzi L, Marchi L (2006) Influence of rheology on debris-flow simulation. Nat Hazards Earth Syst Sci 6:519–528. https://doi.org/10.5194/nhess-6-519-2006

    Article  Google Scholar 

  • Bansal BK, Verma M, Gupta AK, Prasath RA (2022) On mitigation of earthquake and landslide hazards in the eastern Himalayan region. Nat hazards 114:1079–1102. https://doi.org/10.1007/s11069-022-05448-y

    Article  Google Scholar 

  • Batar AK, Watanabe T (2021) Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan region: Recent developments, gaps, and future directions. ISPRS Int J Geo-Inf 10(3):114

    Article  Google Scholar 

  • Bera A, Mukhopadhyay BP, Das D (2019) Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards 96(2):935–959. https://doi.org/10.1007/s11069-019-03580-w

    Article  Google Scholar 

  • Bist KS, Sinha AK (1980) Some observations on the geological and structural setup of Okhimath area in Garhwal Himalaya. Him Geol 10:467–475

    Google Scholar 

  • Bist KS, Sah MP (1999) The devastating landslide of August 1998 in Ukhimath area, Rudraprayag district, Garhwal Himalaya. Curr Sci 76:481–484

    Google Scholar 

  • Bugnion L, Mcardell BW, Bartelt P, Wendeler C (2012) Measurements of hillslope debris flow impact pressure on obstacles. Landslides 9:179–187. https://doi.org/10.1007/s10346-011-0294-4

    Article  Google Scholar 

  • Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413. https://doi.org/10.1007/s11069-011-9844-2

    Article  Google Scholar 

  • Byers AC, Rounce DR, Shugar DH, Lala JM, Byers EA, Regmi D (2019) A rockfall-induced glacial lake outburst flood, Upper Barun Valley. Nepal Landslides 16(3):533–549

    Article  Google Scholar 

  • Capitani M, Ribolini A, Bini M (2013) The slope aspect: a predisposing factor for landsliding? CR Geosci 345:427–438. https://doi.org/10.1016/j.crte.2013.11.002

    Article  Google Scholar 

  • Champatiray PK, Chattoraj SL, Bisht MPS, Kannaujiya S, Pandey K, Goswami A (2015) Kedarnath disaster 2013: causes and consequences using remote sensing inputs. Nat Hazards 81:227–243. https://doi.org/10.1007/s11069-015-2076-0

    Article  Google Scholar 

  • Chattoraj SL (2017) Debris flow modelling and risk assessment of selected landslides from Uttarakhand- case studies using earth observation data. In: Santra A, Santra, S (eds) Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies, The Advances in Geospatial Technologies (AGT) Book Series. IGI Global, Hershey, PA, USA, pp 111–121

  • Chattoraj SL, Champatiray PK, Kannaujiya S (2019) Simulation outputs of major debris flows in Garhwal Himalaya: a geotechnical modeling approach for hazard mitigation. In: Navalgund RR, Kumar AS, Nandy S (eds) Remote Sensing of Northwest Himalayan Ecosystems. Springer Singapore, Singapore, pp 37–56. https://doi.org/10.1007/978-981-13-2128-3_3

    Chapter  Google Scholar 

  • Chen L, Guo Z, Yin K, Shrestha DP, Jin S (2019) The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan’en County (Hubei, China). Nat Hazards Earth Syst Sci 19:2207–2228. https://doi.org/10.5194/nhess-19-2207-2019

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. https://doi.org/10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • CRED (2020) Centre for Research on Epidemiology of Disasters. The International Disaster Database. EM-DAT, CRED / UCLouvain, Brussels, Belgium, Retrieved from https://www.emdat.be, Accessed on 14 January 2021

  • Dash RK, Kanungo DP, Malet JP (2021) Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India. Environ Earth Sci 80(9):1–19. https://doi.org/10.1007/s12665-021-09637-z

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgün A, İkizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 6:1481–1506. https://doi.org/10.1007/s11069-012-0418-8

    Article  Google Scholar 

  • Deng X, Xu D, Zeng M, Qi Y (2018) Landslides and cropland abandonment in China’s mountainous areas: spatial distribution, empirical analysis and policy implications. Sustainability 10:3909. https://doi.org/10.3390/su10113909

    Article  Google Scholar 

  • Dhyani S, Dhyani D (2016) Strategies for reducing deforestation and disaster risk: lessons from Garhwal Himalaya, India. Ecosystem-based disaster risk reduction and adaptation in practice. Springer, Cham, pp 507–528

    Chapter  Google Scholar 

  • Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM (2020) Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl Sci 10:2466. https://doi.org/10.3390/app10072466

    Article  Google Scholar 

  • Du G, Zhang Y, Yang Z, Guo C, Yao X, Sun D (2019) Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methods. Bull Engg Geol Environ 78:4201–4215. https://doi.org/10.1007/s10064-018-1393-4

    Article  Google Scholar 

  • Fernandes NF, Guimarães RF, Gomes RAT, Vieira BC, Montgomery DR, Greenberg H (2004) Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. CATENA 55:163–181. https://doi.org/10.1016/S0341-8162(03)00115-2

    Article  Google Scholar 

  • Frey H, Huggel C, Bühler Y, Buis D, Burga MD, Choquevilca W, Fernandez F, García Hernández J, Giráldez C, Loarte E, Masias P, Portocarrero C, Vicuña L, Walser M (2016) A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru. Landslides 13:1493–1507

    Article  Google Scholar 

  • Gao H, Fam PS, Tay LT, Low HC, Lateh H (2019) An overview and comparison on recent landslide susceptibility mapping methods. Disaster Adv 12:46–64. https://doi.org/10.25303/148da2221

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Sci Rev 162:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

    Article  Google Scholar 

  • Government of India (2011) Primary Census Abstracts, Registrar General of India, Ministry of Home Affairs, Government of India. http://www.censusindia.gov. in/2011census/PCA/pca_highlights/pe_data.html. Accessed 20 December 2022

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: New tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Haque U, Blum P, Da Silva PF, Andersen P et al (2016) Fatal landslides in Europe. Landslides 13:1545–1554. https://doi.org/10.1007/s10346-016-0689-3

    Article  Google Scholar 

  • Hidayat R (2020) Landslide vulnerability mapping for landslide victim relocation. IOP Conf Ser-Mat Sci Engg 771:012054. https://doi.org/10.1088/1757-899X/771/1/012054

    Article  Google Scholar 

  • Hong Y, Adler RF (2007) Towards an early-warning system for global landslides triggered by rainfall and earthquake. Int J Remote Sens 28:3713–3719. https://doi.org/10.1080/01431160701311242

    Article  Google Scholar 

  • Hoque MAA, Pradhan B, Ahmed N, Roy S (2019) Tropical cyclone risk assessment using geospatial techniques for the eastern coastal region of Bangladesh. SCI Total Environ 692:10–22. https://doi.org/10.1016/j.scitotenv.2019.07.132

    Article  Google Scholar 

  • Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529. https://doi.org/10.1016/j.catena.2018.03.003

    Article  Google Scholar 

  • Huang F, Chen J, Du Z, Yao C, Huang J, Jiang Q, Chang Z, Li S (2020) Landslide susceptibility prediction considering regional soil erosion based on machine-learning models. ISPRS Int J Geo-Inf 9:377. https://doi.org/10.3390/ijgi9060377

    Article  Google Scholar 

  • Hürlimann M, Rickenmann D, Graf C (2003) Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J 40:161–175

    Article  Google Scholar 

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engg Geol 102:152–163. https://doi.org/10.1016/j.enggeo.2008.03.012

    Article  Google Scholar 

  • Hussain A, Sarangi GK, Pandit A, Ishaq S, Mammun N, Ahmad B, Jamil MK (2019) Hydropower development in the Hindu Kush Himalayan region: issues, policies and opportunities. Renew Sust Energ Rev 107:446–461. https://doi.org/10.1016/j.rser.2019.03.010

    Article  Google Scholar 

  • Islam MA, Chattoraj SL, Ray PK (2014) Ukhimath landslide 2012 at Uttarakhand, India: causes and consequences. Int J Geomatics Geosci 4:544–557

    Google Scholar 

  • Islam MA, Murshed S, Kabir SMM, Farazi AH, Gazi MY, Jahan I, Akhter SH (2017) Utilization of open source spatial data for landslide susceptibility mapping at Chittagong District of Bangladesh- an appraisal for disaster risk reduction and mitigation approach. Int j Geosci 8(4):22

    Article  Google Scholar 

  • Islam MA, Murshed S, Kabir SM, Farazi AH, Gazi MY, Jahan I, Akhter SH (2017) Utilization of open source spatial data for landslide susceptibility mapping at Chittagong District of Bangladesh—an appraisal for disaster risk reduction and mitigation approach. Int j Geosci 8(04):577

    Article  Google Scholar 

  • Jain N, Martha TR, Khanna K, Roy P, Kumar KV (2021) Major landslides in Kerala, India, during 2018–2020 period: an analysis using rainfall data and debris flow model. Landslides 18:3629–3645

    Article  Google Scholar 

  • Jin KP, Yao LK, Cheng QG, Xing AG (2019) Seismic landslides hazard zoning based on the modified Newmark model: a case study from the Lushan earthquake, China. Nat Hazards 99(1):493–509. https://doi.org/10.1007/s11069-019-03754-6

    Article  Google Scholar 

  • Juliev M, Mergili M, Mondal I, Nurtaev B, Pulatov A, Hübl J (2019) Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci Total Environ 653:801–814

    Article  Google Scholar 

  • Kadavi PR, Lee CW, Lee S (2018) Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens 10:1252. https://doi.org/10.3390/rs10081252

    Article  Google Scholar 

  • Kannaujiya S, Chattoraj SL, Jayalath D, Champati Ray PK, Bajaj K, Podali S, Bisht MPS (2019) Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya. India. Nat Hazards 97(3):1191–1208. https://doi.org/10.1007/s11069-019-03695-0

    Article  Google Scholar 

  • Kaur H, Gupta S, Parkash S (2017) Comparative evaluation of various approaches for landslide hazard zoning: a critical review in Indian perspectives. Spatial Inf Res 25:389–398. https://doi.org/10.1007/s41324-017-0105-7

    Article  Google Scholar 

  • Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorph 113:97–109. https://doi.org/10.1016/j.geomorph.2009.06.006

    Article  Google Scholar 

  • Kelman I (2015) Climate change and the Sendai framework for disaster risk reduction. Int J Disaster Risk Sci 6:117–127. https://doi.org/10.1007/s13753-015-0046-5

    Article  Google Scholar 

  • Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C (2019) Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egyptian J Remote Sens Space Sci 22:11–24. https://doi.org/10.1016/j.ejrs.2018.03.004

    Article  Google Scholar 

  • Kumar A, Asthana AKL, Priyanka RS, Jayangondaperumal R, Gupta AK, Bhakuni SS (2017) Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 284:72–87. https://doi.org/10.1016/j.geomorph.2017.01.003

    Article  Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engg Geol 76:109–128. https://doi.org/10.1016/j.enggeo.2004.06.009

    Article  Google Scholar 

  • Lin WT, Chou WC, Lin CY, Huang PH, Tsai JS (2005) Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan. For Ecol Mgmt 210:55–66. https://doi.org/10.1016/j.foreco.2005.02.026

    Article  Google Scholar 

  • Lo CM, Feng ZY, Chang KT (2018) Landslide hazard zoning based on numerical simulation and hazard assessment. Geomat Nat Haz Risk 9:368–388. https://doi.org/10.1080/19475705.2018.1445662

    Article  Google Scholar 

  • Lv ZY, Shi W, Zhang X, Benediktsson JA (2018) Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation. IEEE J Sel Top ApplEarth Obs Remote Sens 11:1520–1532

    Article  Google Scholar 

  • Maikhuri RK, Nautiyal A, Jha NK, Rawat LS, Maletha A, Phondani PC, Bhatt GC (2017) Socio-ecological vulnerability: assessment and coping strategy to environmental disaster in Kedarnath valley, Uttarakhand, Indian Himalayan Region. Int J Disaster Risk Reduct 25:111–124. https://doi.org/10.1016/j.ijdrr.2017.09.002

    Article  Google Scholar 

  • Malik ZA, Pandey R, Bhatt AB (2016) Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. J Mt Sci 13:69–82. https://doi.org/10.1007/s11629-015-3533-7

    Article  Google Scholar 

  • Martha T, Kumar VK (2013) September, 2012 landslide events in Okhimath, India-an assessment of landslide consequences using very high resolution satellite data. Landslides 10:469–479. https://doi.org/10.1007/s10346-013-0420-6

    Article  Google Scholar 

  • Martha TR, Van Westen CJ, Kerle N, Jetten V, Vinod Kumar K (2013) Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorph 184:139–150. https://doi.org/10.1016/j.geomorph.2012.12.001

    Article  Google Scholar 

  • Melchiorre C, Abella EAC, Van Westen CJ, Matteucci M (2011) Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo. Cuba Comput Geosci 37:410–425. https://doi.org/10.1016/j.cageo.2010.10.004

    Article  Google Scholar 

  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev 207:103225. https://doi.org/10.1016/j.earscirev.2020.103225

    Article  Google Scholar 

  • Min DH, Yoon HK (2021) Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility mapping. Sci Rep 11:6594

    Article  Google Scholar 

  • Nahayo L, Ndayisaba F, Karamage F, Nsengiyumva JB, Kalisa E, Mind’je R, Mupenzi C, Li L (2019) Estimating landslides vulnerability in Rwanda using analytic hierarchy process and geographic information system. Integr Environ Asses 15:364–373. https://doi.org/10.1002/ieam.4132

    Article  Google Scholar 

  • Naithani AK (2001) The August, 1998 Okhimath tragedy in Rudraprayag district of Garhwal Himalaya, Uttaranchal, India. Gaia 16:145–156

    Google Scholar 

  • Naithani AK, Kumar D, Prasad C (2002) The catastrophic landslide of 16 July 2001 in Phata Byung area, Rudraprayag District, Garhwal Himalaya, India. Curr Sci 16:145–156

    Google Scholar 

  • Nath RR, Pareek N, Sharma ML (2022) Implications and inclusion of size-dependent scenario earthquakes on landslide hazard zonation: a case study of the Indian Himalayas. CATENA 212:106027. https://doi.org/10.1016/j.catena.2022.106027

    Article  Google Scholar 

  • NRSC (2006) Landuse landcover atlas of India based on multi-temporal satellite data of (2005–2006). National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad, India. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/0506.pdf

  • Onagh M, Kumra VK, Rai PK (2012) Landslide Susceptibility Mapping in a Part of Uttarkashi District (India) by Multiple Linear Regression Method. Int J Geol Earth Envt Sci 2(2):102–120

    Google Scholar 

  • Pandey VK, Sharma MC (2017) Probabilistic landslide susceptibility mapping along Tipri to Ghuttu highway corridor, Garhwal Himalaya (India). Remote Sens Appl: Soc Envt 8:1–11. https://doi.org/10.1016/j.rsase.2017.07.007

    Article  Google Scholar 

  • Papathoma-Köhle M, Gems B, Sturm M, Fuchs S (2017) Matrices, curves and indicators: a review of approaches to assess physical vulnerability to debris flows. Earth Sci Rev 171:272–288

    Article  Google Scholar 

  • Parry S (2011) Chapter Fifteen - The application of geomorphological mapping in the assessment of landslide hazard in Hong Kong. In: Smith MJ, Paron P, Griffiths JS (eds) Developments in Earth Surface Processes, 15. Elsevier, Amsterdam, Oxford, pp 413–441

    Google Scholar 

  • Pehlivan M, Madugo CM, Macdonald A, Rayamajhi D, Hashash YM, Tiwari B (2017) Hydropower infrastructure performance after the 2015 Gorkha, Nepal, earthquake sequence. Earthq Spectra 33:115–132

    Article  Google Scholar 

  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB (2016) A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw 84:240–250. https://doi.org/10.1016/j.envsoft.2016.07.005

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed. Iran Arab J Geosci 6:2351–2365. https://doi.org/10.1007/s12517-012-0532-7

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2016) Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. CATENA 140:125–139. https://doi.org/10.1016/j.catena.2016.01.022

    Article  Google Scholar 

  • Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF (2012) Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia. Environ Monit Assess 184:715–727. https://doi.org/10.1007/s10661-011-1996-8

    Article  Google Scholar 

  • Pradhan B, Sameen MI, Al-Najjar HAH, Sheng D, Alamri A, Park HJ (2021) A meta-learning approach of optimisation for spatial prediction of landslides. Remote Sens 13(22):4521. https://doi.org/10.3390/rs13224521

    Article  Google Scholar 

  • Prochaska AB, Santi PM, Higgins JD, Cannon SH (2008) A study of methods to estimate debris flow velocity. Landslides 5:431–444. https://doi.org/10.1007/s10346-008-0137-0

    Article  Google Scholar 

  • Promper C, Puissant A, Malet JP, Glade T (2014) Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl Geogr 53:11–19. https://doi.org/10.1016/j.apgeog.2014.05.020

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi AD, Hu S, Zhang Y, He Y (2018) Landslide distribution and size versus relative relief (Shaanxi Province, China). B Engg Geol Environ 77:1331–1342

    Article  Google Scholar 

  • Quader MA, Khan AU, Kervyn M (2017) Assessing risks from cyclones for human lives and livelihoods in the coastal region of Bangladesh. Int J Env Res Pub Health 14:831. https://doi.org/10.3390/ijerph14080831

    Article  Google Scholar 

  • Ram P, Gupta V (2022) Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya. India. Environ Dev Sustain 24(1):473–501. https://doi.org/10.1007/s10668-021-01449-2

    Article  Google Scholar 

  • Ramli MF, Yusof N, Yuosoff MK, Juahir H, Shafri HZM (2010) Lineament mapping and its application in landslide hazard assessment: a review. B Engg Geol Environ 69:215. https://doi.org/10.1007/s10064-009-0255-5

    Article  Google Scholar 

  • Renard KG et al. (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), United States Government Printing, Washington. https://www.ars.usda.gov/ARSUserFiles/64080530/RUSLE/AH_703.pdf

  • Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr, O (eds) Debris-flow Hazards and Related Phenomena, Springer Praxis Books. Springer, Berlin, Heidelberg, pp 305–324. https://doi.org/10.1007/3-540-27129-5_13

  • Roccati A, Paliaga G, Luino F, Faccini F, Turconi L (2021) GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land 10(2):162

    Article  Google Scholar 

  • Roodposhti MS, Aryal J, Pradhan B (2019) A novel rule-based approach in mapping landslide susceptibility. Sensors 19:2274

    Article  Google Scholar 

  • Roy P, Kushwaha S, Murthy M, Roy A, Kushwaha D, Reddy C, Behera M, Mathur V, Padalia H, Saran S (2012) Biodiversity characterisation at landscape level: national assessment. Indian institute of remote sensing. Indian Institute of Remote Sensing, Dehra Dun

  • Saha S, Saha A, Hembram TK, Pradhan B, Alamri AM (2020) Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Appl Sci 10(11):3772

    Article  Google Scholar 

  • Sahin EK, Colkesen I, Acmali SS, Akgun A, Aydinoglu AC (2020) Developing comprehensive geocomputation tools for landslide susceptibility mapping: LSM tool pack. Comput Geosci 144:104592. https://doi.org/10.1016/j.cageo.2020.104592

    Article  Google Scholar 

  • Saleem N, Huq M, Twumasi NY, Javed A, Sajjad A (2019) Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: a review. ISPRS Int J Geo-Inf 8:545. https://doi.org/10.3390/ijgi8120545

    Article  Google Scholar 

  • Santangelo M, Marchesini I, Bucci F, Cardinali M, Fiorucci F, Guzzetti F (2015) An approach to reduce mapping errors in the production of landslide inventory maps. Nat Hazards Earth Syst Sci 15:2111–2126

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK (2006) Landslides in the Alaknanda Valley of Garhwal Himalaya, India. Q J Engg Geol Hydrogeol 39:79–82. https://doi.org/10.1144/1470-9236/05-020

    Article  Google Scholar 

  • Sarkar S, Roy AK, Raha P (2016) Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. CATENA 142:36–46. https://doi.org/10.1016/j.catena.2016.02.009

    Article  Google Scholar 

  • Schlögl M, Richter G, Avian M, Thaler T, Heiss G, Lenz G, Fuchs S (2019) On the nexus between landslide susceptibility and transport infrastructure – an agent-based approach. Nat Hazards Earth Syst Sci 19:201–219. https://doi.org/10.5194/nhess-19-201-2019

    Article  Google Scholar 

  • Schmaltz EM, Steger S, Glade T (2017) The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology 290:250–264

    Article  Google Scholar 

  • Schmidt J, Matcham I, Reese S, King A, Bell R, Henderson R, Smart G, Cousins J, Smith W, Heron D (2011) Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling. Nat Hazards 58:1169–1192. https://doi.org/10.1007/s11069-011-9721-z

    Article  Google Scholar 

  • Segoni S, Pappafico G, Luti T, Catani F (2020) Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides 17:2443–2453. https://doi.org/10.1007/s10346-019-01340-2

    Article  Google Scholar 

  • Singh S (2005) Secular pilgrimages and sacred tourism in the Indian Himalayas. GeoJournal 64:215–223. https://doi.org/10.1007/s10708-005-5649-8

    Article  Google Scholar 

  • Singh K, Arya AK, Agarwal KK (2020) Landslide occurrences along lineaments on NH-154A, Chamba, Himachal Pradesh; extracted from Satellite Data Landsat 8, India. J Indian Soc Remote Sens 48:791–803. https://doi.org/10.1007/s12524-020-01113-8

    Article  Google Scholar 

  • Skilodimou HD, Bathrellos GD, Koskeridou E, Soukis K, Rozos D (2018) Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese. Greece Land 7(3):85

    Google Scholar 

  • Song D, Zhou GGD, Xu M, Choi CE, Li S, Zheng Y (2019) Quantitative analysis of debris-flow flexible barrier capacity from momentum and energy perspectives. Engg Geol 251:81–92. https://doi.org/10.1016/j.enggeo.2019.02.010

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26. https://doi.org/10.1016/j.enggeo.2008.02.012

    Article  Google Scholar 

  • Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility mapping. Nat Hazards 87:145–164

    Article  Google Scholar 

  • Strauch R, Istanbulluoglu E, Riedel J (2019) A new approach to mapping landslide hazards: a probabilistic integration of empirical and physically based models in the North Cascades of Washington, USA. Nat Hazards Earth Syst Sci 19:2477–2495

    Article  Google Scholar 

  • Sulastriningsih HS, Tewal STR, Suoth GFE (2021) Evaluation of landslide based settlement distribution in Manado City. IOP Conf Ser-Mat Sci Engg 1125:012101

    Article  Google Scholar 

  • Sur U, Singh P, Rai PK, Thakur JK (2021) Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand. India Environ Dev Sustain 23(9):13526–13554. https://doi.org/10.1007/s10668-021-01226-1

    Article  Google Scholar 

  • Tacconi Stefanelli C, Catani F, Casagli N (2015) Geomorphological investigations on landslide dams. Geoenviron Disasters 2:21. https://doi.org/10.1186/s40677-015-0030-9

    Article  Google Scholar 

  • Thennavan E, Pattukandan Ganapathy G (2020) Evaluation of landslide hazard and its impacts on hilly environment of the Nilgiris District - a geospatial approach. Geoenviron Disasters 7:3. https://doi.org/10.1186/s40677-019-0139-3

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131

    Article  Google Scholar 

  • Van Westen CJ (1997) Statistical landslide hazard analysis (ILWIS 2.1 for Windows application guide). The Netherlands, Enschede, ITC publication, pp. 73–84. https://www.itc.nl/ilwis/pdf/appch05.pdf

  • Vasu NN, Lee SR, Pradhan AMS, Kim YT, Kang SH, Lee DH (2016) A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index. Engg Geol 215:36–49. https://doi.org/10.1016/J.ENGGEO.2016.10.006

    Article  Google Scholar 

  • Van Westen CJ (2016) National scale landslide susceptibility assessment for Dominica. Caribbean Handbook on Risk Information Management, World Bank GFDRR, ACP-EU Natural Disaster Risk Reduction. 2016. Program. Available online: http://www.charim.net (accessed on 18 November 2017).

  • Xu C, Xu X, Dai F, Wu Z, He H, Shi F, Wu X, Xu S (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat Hazards 68:883–900

    Article  Google Scholar 

  • Xu C, Xu X, Dai F, Wu Z, He H, Shi F, Xu S (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat Hazards 68(2):883–900

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287. https://doi.org/10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yang W, Wang M, Shi P (2013) Using MODIS NDVI time series to identify geographic patterns of landslides in vegetated regions. IEEE Geosci Remote Sens 10:707–710. https://doi.org/10.1109/lgrs.2012.2219576

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138. https://doi.org/10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

  • Zhang Q, Yu H, Li Z, Zhang G, Ma DT (2020) Assessing potential likelihood and impacts of landslides on transportation network vulnerability. Transport Res Part D-Transport Envt 82:102304. https://doi.org/10.1016/j.trd.2020.102304

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018) Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput Geosci 112:23–37. https://doi.org/10.1016/j.cageo.2017.11.019

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Centre for Space Science and Technology Education in Asia Pacific (CSSTEAP) and Indian institute of Remote sensing (IIRS). We are grateful to IIRS for all of their research assistance, particularly for providing very high-resolution satellite imagery and financial support for field investigation for this work. We are indebted to the local administration of the study site for their valuable logistical support during field investigation. We acknowledge the contribution of Dr. Champati Ray, who sadly passed away in 2021 due to COVID, for his unwavering support and knowledge sharing for this research. The authors are grateful to Dr. Amy Griffin, RMIT University, Australia, for her English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ashraful Islam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Chattoraj, S.L. Modelling landslides in the Lesser Himalaya region using geospatial and numerical simulation techniques. Arab J Geosci 16, 480 (2023). https://doi.org/10.1007/s12517-023-11541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11541-8

Keywords

Navigation