Skip to main content
Log in

Environmental impact assessment and statistical analysis of natural radioactivity in the slopes of Mount Cameroon area

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The activity concentrations of natural radionuclides 226Ra, 232Th, and 40K in soil samples from the slopes of Mount Cameroon (South-West coastal region) have been investigated using gamma-ray spectrometry measurement-based NaI (Tl) detector. The average activity concentrations of 226Ra, 232Th, and 40K in the assessed soil samples were found to be 15.80, 43.94, and 111.68 Bq/kg, respectively. From the obtained concentrations, radiological hazard parameters such as the equivalent radium activity (Raeq), the dose rate (Dose_rate), the annual effective dose (AED), the risk indexes (Hex, Hin, Ia, Ig, ELCR), and the annual effective dose to the organs (Dorgans) were calculated. The mean values of the obtained concentrations and radiological hazard parameters are all below the world average values and suggest no radiological alarm for the local population and visitors. A statistical study consisting of descriptive analysis, Pearson correlation, principal component analysis, and cluster analysis was performed to investigate the distribution and relationship between 226Ra, 232Th, and 40K in the study area; also, to find out which factor mainly influences the calculated radiological parameters and to classify the samples according to their category or similarity. It was found that 226Ra, 232Th, and 40K follow an approximately normal distribution and that there is a very low correlation between 40K and the other radionuclides. Cluster analysis reveals four clusters which can also be compacted into two major groups suggesting that the samples are primarily from two groups of rocks. Finally, the main contributor to radiological exposure in the study area is 232Th, which is in agreement with the reference published works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agbalagba EO, Avwiri GO, Chad-Umoreh YE (2012) γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J Environ Radioactiv 109:64–70. https://doi.org/10.1016/j.jenvrad.2011.10.012

    Article  Google Scholar 

  • Ahmad N, Hussein AJA (1998) Radiation doses in Jordanian dwellings due to natural radioactivity in construction materials and soil. J Environ Radioactiv 41(2):127–136. https://doi.org/10.1016/S0265-931X(98)00007-1

    Article  Google Scholar 

  • Akkurt I, Günoğlu K (2014) Natural radioactivity measurements and radiation dose estimation in some sedimentary rock samples in Turkey. Sci Technol Nuclear Install 2014:1–6. https://doi.org/10.1155/2014/950978

    Article  Google Scholar 

  • Al-Hamarneh IF, Awadallah MI (2009) Soil radioactivity levels and radiation hazard assessment in the highlands of northern. Radiat Measure 44(1):102–110. https://doi.org/10.1016/j.radmeas.2008.11.005

    Article  Google Scholar 

  • Anekwe UL, Avwiri GO (2016) Determination of radiological health hazard indices in selected crude oil spilled environment in Rivers State, Nigeria. Am J Sci Ind Res 7(3):50–59. https://doi.org/10.5251/ajsir.2016.7.3.50.59

    Article  Google Scholar 

  • Wael M. Badawy, Octavian G. Duliu, Marina V. Frontasyeva, Hussein El Samman & Arnaud Faanhof (2018) Environmental radioactivity of soils and sediments: Egyptian sector of the Nile valley, Isot Environ Health Stud https://doi.org: 10.1080/10256016.2018.1482292. www.countryeconomy.com, 07/10/2021, 16h56

  • Bangotra P, Mehra R, Jakhu R, Kaur K, Pandit P, Kanse S (2017) Estimation of 222 Rn exhalation rate and assessment of radiological risk from activity concentration of 226 Ra, 232 Th and 40 K. J Geochem Explor 184:304–310. https://doi.org/10.1016/j.gexplo.2017.05.002

    Article  Google Scholar 

  • Blanchard DG, Louis NE, Emmanuel NNIJ, Flore TSY, Daniel B, Godfroy KNM (2017) NORM measurements and radiological hazard assessment in the gold mining areas of Eastern Cameroon. Radiat Environ Med 6(1):22–28

    Google Scholar 

  • Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J Radiat Res Appl Sci 8(1):17–25. https://doi.org/10.1016/j.jrras.2014.10.003

    Article  Google Scholar 

  • Déruelle B, Bardintzeff JM, Cheminée JL, Ngounouno I, Lissom J, Nkoumbou C, Nkouathio DG (2000) Éruptions simultanées de basalte alcalin et de hawaiite au mont Cameroun (28 mars–17 avril 1999). Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 331(8):525–531. https://doi.org/10.1016/S1251-8050(00)01454-3

    Article  Google Scholar 

  • El-Bahia SM, Sroora A, Mohamed GY, El-Gendy NS (2017) Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers. Appl Radiat Isot 123:121–127. https://doi.org/10.1016/j.apradiso.2017.02.031

    Article  Google Scholar 

  • European Commission (1999) Radiological protection principles concerning the natural radioactivity of building materials. Gene Environ Nuclear Saf Civil Protect EC Radiat Protect 112

  • Guembou JCS, Ndontchueng MM, Nguelem JEM, Chene G, Kayo S, Motapon O, Strivay D (2019) Elemental quantification and radioactive characterization of soil from Douala Bassa area: littoral region of Cameroon using X-and γ-rays spectrometry. Environ Res Commun 1(6):065001

    Article  Google Scholar 

  • Hamidalddin SHQ (2015) Measurements of natural radioactivity of industrial raw materials from the west of Saudi Arabia (Arabian shield). J Modern Phys 6:510–520

    Article  Google Scholar 

  • Harmsen K, De Haan FAM (1980) Occurance and behaviour of uranium and thorium in soil and water. Netherlands J Agricult Sci 28(1):40–62. https://doi.org/10.18174/njas.v28i1.17043

    Article  Google Scholar 

  • IAEA (1989) Technical reports series no. 229: measurement of radionuclides in food and the environment, a guidebook. In: International Atomic Energy Agency, Vienna

  • ICRP (International Commission on Radiological Protection) (1990) Recommendations of the International, Commission on Radiological Protec on, Vol. 21, No.1–3, Publica on 60

  • ICRP (International Commission on Radiological Protection) (1994) Protection against Radon-222 at Home and at Work (ICRP Publication 65). Ann ICRP 23 (2). Pergamon Press, Oxford

    Google Scholar 

  • Nicolas L (2010) Mémoire des hommes, mémoire des sols. Etude ethno-pédologique des usages paysans du Mont Cameroun. Géographie. Université Michel de Montaigne - Bordeaux III. Français. tel-00466511. https://doi.org/10.4000/cdg.2149

  • Ngachin M, Garavaglia M, Giovani C, Njock MK, Nourreddine A (2008) Radioactivity level and soil radon measurement of a volcanic area in Cameroon. J Environ Radioactiv 99(7):1056–1060. https://doi.org/10.1016/j.jenvrad.2007.12.022

    Article  Google Scholar 

  • Nguelem EJM, Ndontchueng MM, Motapon O (2016) Determination of 226 Ra, 232 Th, 40 K, 235 U and 238 U activity concentration and public dose assessment in soil samples from bauxite core deposits in Western Cameroon. SpringerPlus 5(1):1–12

    Google Scholar 

  • Penabei S, Bongue D, Maleka P, Dlamini T, Saïdou Guembou Shouop CJ, Halawlaw YI, Ngwa Ebongue A, Kwato Njock MG (2018) Assessment of natural radioactivity levels and the associated radiological hazards in some building materials from Mayo-Kebbi region. Radioprotection, Chad. https://doi.org/10.1051/radiopro/2018030

    Book  Google Scholar 

  • Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakumar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–127. https://doi.org/10.1016/j.apradiso.2013.12.005

    Article  Google Scholar 

  • Sahin L, Hafızoğlu N, Çetinkaya H, Manisa K, Bozkurt E, Biçer A (2017) Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Isot Environ Health Stud 53(2):212–221. https://doi.org/10.1080/10256016.2016.1207640

    Article  Google Scholar 

  • Sanusi MSM, Ramli AT, Hassan WMSW, Lee MH, Izham A, Said MN, Wagiran H, Heryanshah A (2017) Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia. Environ Int:S0160412016303804. https://doi.org/10.1016/j.envint.2017.01.009

  • Senthilkumar RD, Narayanaswamy R (2016) Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J Radiat Res Appl Sci 9(4):449–456. https://doi.org/10.1016/j.jrras.2016.07.002

    Article  Google Scholar 

  • Sieffermann G (1969) Les sols de quelques régions volcaniques du Cameroun: variations pédologiques et minéralogiques du milieu équatorial au milieu tropical. These.Fac.Sci.Univ.Strasbourg 1969(10):P.1A290.https://www.documentation.ird.fr/hor/fdi:06412

  • Sivakumar S, Chandrasekaran A, Ravisankar R, Ravikumar SM, Prince Prakash Jebakumar J, Vijayagopal P, Vijayalakshmi I, Jose MT (2014) Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach. J Taibah Univ Sci 8(4):375–384. https://doi.org/10.1016/j.jtusci.2014.03.004

    Article  Google Scholar 

  • Tanasković I, Golobocanin D, Miljević N (2012) Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor 112:226–234. https://doi.org/10.1016/j.gexplo.2011.08.014

    Article  Google Scholar 

  • Tchinda N (2010) Le système de prévention et de gestion des catastrophes environnementales au cameroun et le droit international de l’environnement (Doctoral dissertation)

  • Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat Measure 37(3):221–229. https://doi.org/10.1016/S1350-4487(03)00028-3

    Article  Google Scholar 

  • UNSCEAR (2000) Sources effects and risks of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation, report to the general assembly, with annex B. United Nation

  • UNSCEAR (2008) United Nations Scientific Committee on the Effect of Atomic Radiation report to the general assembly. AnnexB: exposures of the public and workers from various sources of radiation

  • Uyanık NA, Uyanık O, Akkurt İ (2013) Micro-zoning of the natural radioactivity levels and seismic velocities of potential residential areas in volcanic fields: the case of Isparta (Turkey). J Appl Geophys 98:191–204. https://doi.org/10.1016/j.jappgeo.2013.08.020

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge partial support of this work by the Abdus Salam International Centre for Theoretical Physics (ICTP) under the (OEA-AF-12) project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dorine Flore Tiomene or Daniel Bongue.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiomene, D.F., Bongue, D., Guembou Shouop, C.J. et al. Environmental impact assessment and statistical analysis of natural radioactivity in the slopes of Mount Cameroon area. Arab J Geosci 16, 413 (2023). https://doi.org/10.1007/s12517-023-11511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11511-0

Keywords

Navigation