Skip to main content
Log in

Assessment of soil radioactivity levels and radiation hazards in Guangyao Village, South China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Soil samples were collected at 30 sampling points distributed evenly in Guangyao Village, South China to determine the radioactivity level around a monazite tailings pond via gamma spectrometry with an HPGe detector. The result of mean radioactivity concentration ± standard deviation of radionuclides 226Ra, 232Th and 40K in the soil were 26.84 ± 4.36,8.87 ± 0.93 and 453.81 ± 99.95 Bq kg−1, respectively. Shapiro–Wilk normality test results show 226Ra and 232Th radioactivity concentrations consistent with normal distributions. The natural radioactivity level in the soil was evaluated by Radium equivalent activity (Raeq), Absorbed dose rate (Dr), Annual effective dose equivalent (AEDE), Gamma level index (Iγ), Annual gonadal dose equivalent (AGDE), Internal Hazard Index (Hin) and External hazard index (Hex). The radionuclides and radioactive hazard parameters were also statistically analyzed. A spatial distribution map of radionuclides was generated with a geographic information system and subjected to correlation analysis, principal component analysis and cluster analysis of radionuclides and radioactive hazard parameters. The results show that the radioactivity level in the soil of Guangyao Village is lower than the world average and recommended value, suggesting that it poses no significant threat to local residents. This work may provide baseline data for future soil radioactive environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNSCEAR(United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources and effects of ionizing radiation, Report to the General Assembly with Scientific Annexes, Annex B. United Nations, New York

  2. Habib MA, Basuki T, Miyashita S et al (2019) Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim Acta 107:243–259. https://doi.org/10.1515/ract-2018-3044

    Article  CAS  Google Scholar 

  3. El Afifi EM, Shahr El-Din AM, Aglan RF et al (2017) Baseline evaluation for natural radioactivity level and radiological hazardous parameters associated with processing of high grade monazite. Regul Toxicol Pharmacol 89:215–223. https://doi.org/10.1016/j.yrtph.2017.07.029

    Article  CAS  PubMed  Google Scholar 

  4. Aladeniyi K, Aladenika AK (2015) Radiological study of sachet-packaged water: a case study of the products in Owo local government area of Ondo State, Nigeria. J Radiol Prot 35:N19–N24. https://doi.org/10.1088/0952-4746/35/3/n19

    Article  CAS  PubMed  Google Scholar 

  5. Charro E, Pardo R, Peña V (2013) Chemometric interpretation of vertical profiles of radionuclides in soils near a Spanish coal-fired power plant. Chemosphere 90:488–496. https://doi.org/10.1016/j.chemosphere.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Charro E, Pardo R, Peña V (2013) Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in spain. J Environ Radioact 124:84–92. https://doi.org/10.1016/j.jenvrad.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Hamed MM, Hilal MA, Borai EH (2016) Chemical distribution of hazardous natural radionuclides during monazite mineral processing. J Environ Radioact 162–163:166–171. https://doi.org/10.1016/j.jenvrad.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  8. García-Tenorio R, Manjón G, Vioque I et al (2018) Grey monazite (rare earths) mining in centre of Spain: Characterization and pre-operational radiological evaluation. Chemosphere 208:691–697. https://doi.org/10.1016/j.chemosphere.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  9. Nurrul NA, Khoo KS, Mohamed NH et al (2019) Malaysian monazite and its processing residue: chemical composition and radioactivity. J Radioanal Nucl Chem 322:1097–1105. https://doi.org/10.1007/s10967-019-06813-1

    Article  CAS  Google Scholar 

  10. Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M (2019) Human exposures to rare earth elements: Present knowledge and research prospects. Environ Res 171:493–500. https://doi.org/10.1016/j.envres.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  11. Coles DG, Ragaini RC, Ondov JM (1978) Behavior of natural radionuclides in western coal-fired power plants. Environ Sci Technol 12:442–446. https://doi.org/10.1021/es60140a007

    Article  CAS  Google Scholar 

  12. Al-Hamarneh IF, Alkhomashi N, Almasoud FI (2016) Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J Environ Radioact 160:1–7. https://doi.org/10.1016/j.jenvrad.2016.04.012

  13. Adedokun MB, Aweda MA, Maleka PP et al (2019) Natural radioactivity contents in commonly consumed leafy vegetables cultivated through surface water irrigation in Lagos state, Nigeria. J Radiat Res Appl Sci 12:147–156. https://doi.org/10.1080/16878507.2019.1618084

    Article  Google Scholar 

  14. Dai L, Wei H, Wang L (2007) Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China. Environ Res 104:201–208. https://doi.org/10.1016/j.envres.2006.11.005

  15. Sakoda A, Murakami S, Ishimori Y, Horai S (2020) Concentration ratios of 238U and 226Ra for insects and amphibians living in the vicinity of the closed uranium mine at Ningyo-toge, Japan. J Radiat Res 61:207–213. https://doi.org/10.1093/jrr/rrz096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parial K, Guin R, Agrahari S, Sengupta D (2016) Monitoring of radionuclide migration around Kolaghat thermal power plant, West Bengal, India. J Radioanal Nucl Chem 307:533–539. https://doi.org/10.1007/s10967-015-4152-z

    Article  CAS  Google Scholar 

  17. Halim MA, Majumder RK, Zaman MN (2015) Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab J Geosci 8:3391–3401. https://doi.org/10.1007/s12517-014-1480-1

    Article  CAS  Google Scholar 

  18. Charro E, Pardo R, Peña V (2013) Chemometric interpretation of vertical profiles of radionuclides in soils near a Spanish coal-fired power plant. Chemosphere. 90:488–496. https://doi.org/10.1016/j.chemosphere.2012.08.008

  19. Nenadović S, Nenadović M, Kljajević L, et al (2012) Vertical distribution of natural radionuclides in soil: Assessment of external exposure of population in cultivated and undisturbed areas. Sci Total Environ 429:309–316. https://doi.org/10.1016/j.scitotenv.2012.04.054

  20. Cember H, Johnson TE (2012) HEALTH PHYSICS SOCIETY • 2012 AFFILIATE MEMBERS. Health Phys 102:112. https://doi.org/10.1097/01.HP.0000410056.48665.1f

    Article  Google Scholar 

  21. Kaul A, Becker D, Brix G, Dalheimer A, Dietze G, Doerfel HR, Weiss W (2005) Group VIII:Advanced materials and technologie. In: Radiological protection. Berlin: Springer-Verlag.

  22. Yang B, Zhou Q, Zhang J et al (2019) Assessment of radioactivity level and associated radiation exposure in topsoil from eastern region of Shangrao Prefecture, China. J Radioanal Nucl Chem 319:297–302. https://doi.org/10.1007/s10967-018-6298-y

    Article  CAS  Google Scholar 

  23. Kardan MR, Fathabdi N, Attarilar A et al (2017) A national survey of natural radionuclides in soils and terrestrial radiation exposure in Iran. J Environ Radioact 178–179:168–176. https://doi.org/10.1016/j.jenvrad.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  24. Al-Sulaiti H, Al Mugren KS, Bradley DA, et al (2017) An assessment of the natural radioactivity distribution and radiation hazard in soil samples from Qatar using high-resolution gamma-ray spectrometry. Radiat Phys Chem 140:132–136. https://doi.org/10.1016/j.radphyschem.2017.05.001

  25. Shayeb MA, Baloch MA (2020) Distribution of natural radioactivity in soil and date palm-pits using high purity germanium radiation detectors and LB-alpha/beta gas-flow counter in Saudi Arabia. Nucl Eng Technol 52:1282–1288. https://doi.org/10.1016/j.net.2019.12.009

    Article  CAS  Google Scholar 

  26. Santawamaitre T, Malain D, Al-Sulaiti HA et al (2014) Determination of 238U, 232Th and 40K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86. https://doi.org/10.1016/j.jenvrad.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  27. Ajayi OS (2009) Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys 48:323–332. https://doi.org/10.1007/s00411-009-0225-0

    Article  CAS  PubMed  Google Scholar 

  28. Issa SAM (2013) Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in dakahlia, egypt. Radiat Prot Dosimetry 156:59–67. https://doi.org/10.1093/rpd/nct039

    Article  CAS  PubMed  Google Scholar 

  29. Sroor A, El-Bahi SM, Ahmed F, Abdel-Haleem AS (2001) Natural radioactivity and radon exhalation rate of soil in southern Egypt. Appl Radiat Isot 55:873–879. https://doi.org/10.1016/s0969-8043(01)00123-3

    Article  CAS  PubMed  Google Scholar 

  30. Team QGD (2014) Quantum GIS Geographic Information System. Open Source Geospatial Found Proj

  31. Bíl M, Bílová M, Kubeček J (2012) Unified GIS database on cycle tourism infrastructure. Tour Manag 33:1554–1561. https://doi.org/10.1016/j.tourman.2012.03.002

    Article  Google Scholar 

  32. Wu ST, Chen YS (2016) Examining eco-environmental changes at major recreational sites in Kenting National Park in Taiwan by integrating SPOT satellite images and NDVI. Tour Manag 57:23–36. https://doi.org/10.1016/j.tourman.2016.05.006

    Article  Google Scholar 

  33. Organization for Economic Cooperation and Development (OECD) (1979) Exposure to Radiation from Natural Radioactivity in Building Materials Report by NEA Group of Experts of the Nuclear Energy Agency.OECD. Fr Paris

  34. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  PubMed  Google Scholar 

  35. Belivermis M, Ӧnder K, Çotuk Y, Topcuoğlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26. https://doi.org/10.1007/s10661-009-0812-1

    Article  CAS  PubMed  Google Scholar 

  36. Al-Hamarneh IF, Awadallah MI (2009) Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan. Radiat Meas 44:102–110. https://doi.org/10.1016/j.radmeas.2008.11.005

  37. UNSCEAR(United Nations Scientific Committee on the Effects of Atomic Radiation) (2008) Sources and Effects of Ionizing Radiation, Exposures of the Public and Workers from Various Sources of Radiation, Report to the General Assembly with Scientific Annex-b. United Nations, New York

  38. Mamont-Ciesla K, Gwiazdowski B, Biernacka M ZA (1982) Radioactivity of building materials in Poland. Vohra G, Pillai KC, Sadavisan S (eds), Nat Radiat Environ Halsted Pr:p 551

  39. Krieger R (1981) Radioactivity of construction materials. Betonw Fert Techn 47:468

    CAS  Google Scholar 

  40. El Mamoney MH, Khater AEM (2004) Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast. J Environ Radioact 73:151–168. https://doi.org/10.1016/j.jenvrad.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  41. Radi Dar MA, El-Saharty AA (2012) Some radioactive-elements in the coastal sediments of the Mediterranean Sea. Radiat Prot Dosimetry 153:361–368. https://doi.org/10.1093/rpd/ncs104

    Article  CAS  PubMed  Google Scholar 

  42. Papaefthymiou H, Athanasopoulos D, Papatheodorou G, et al (2013) Uranium and other natural radionuclides in the sediments of a Mediterranean fjord-like embayment, Amvrakikos Gulf (Ionian Sea), Greece. J Environ Radioact 122:43–54. https://doi.org/10.1016/j.jenvrad.2013.02.020

  43. Alfonso JA, Pérez K, Palacios D et al (2014) Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. J Radioanal Nucl Chem 300:219–224. https://doi.org/10.1007/s10967-014-2999-z

    Article  CAS  Google Scholar 

  44. Tukey JW (1977) Eploratory Data Analysis. Addison Wesley

    Google Scholar 

  45. Haribala HuB, Wang C et al (2016) Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotoxicol Environ Saf 130:185–192. https://doi.org/10.1016/j.ecoenv.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  46. Ribeiro FCA, Silva JIR, Lima ESA et al (2018) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43. https://doi.org/10.1016/j.jenvrad.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  47. S S, D R R, E S, J S, (2020) Measurement of radon concentration in drinking water and natural radioactivity in soil and their radiological hazards. J Radiat Res Appl Sci 13:12–26. https://doi.org/10.1080/16878507.2019.1693175

    Article  CAS  Google Scholar 

  48. Kolo MT, Aziz SABA, Khandaker MU et al (2015) Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia. Environ Sci Pollut Res 22:13127–13136. https://doi.org/10.1007/s11356-015-4577-5

    Article  CAS  Google Scholar 

  49. Idriss H, Salih I, Alaamer AS et al (2016) Environmental-Impact Assessment of Natural Radioactivity Around a Traditional Mining Area in Al-Ibedia, Sudan. Arch Environ Contam Toxicol 70:783–792. https://doi.org/10.1007/s00244-016-0271-y

    Article  CAS  PubMed  Google Scholar 

  50. Ademola AK, Olaoye MA, Abodunrin PO (2015) Radiological safety assessment and determination of heavy metals in soil samples from some waste dumpsites in Lagos and Ogun state, south-western, Nigeria. J Radiat Res Appl Sci 8:148–153. https://doi.org/10.1016/j.jrras.2014.12.010

    Article  CAS  Google Scholar 

  51. Xhixha G, Baldoncini M, Bezzon G, et al (2014) Assessment of Naturally Occurring Radioactive Materials ( NORMs ) in soils from the Kuçova oilfield,Albania. In: the 7th International Conference on Environmental and Geological Science and Engineering. Salerno, Italy, pp 154–160

  52. Mohammed RS, Ahmed RS (2017) Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq. Environ Earth Sci 76:303. https://doi.org/10.1007/s12665-017-6616-7

    Article  CAS  Google Scholar 

  53. Alshahri F, El-Taher A (2019) Investigation of natural radioactivity levels and evaluation of radiation Hazards in residential-area soil near a Ras Tanura refinery, Saudi Arbia. Polish J Environ Stud 28:25–34. https://doi.org/10.15244/pjoes/83611

  54. El-Didamony H, Ali MM, Awwad NS et al (2013) Radiological characterization and treatment of contaminated phosphogypsum waste. Radiochemistry 55:454–459. https://doi.org/10.1134/S106636221304019X

    Article  CAS  Google Scholar 

  55. Brown S (2016) Measures of Shape: Skewness and Kurtosis. https://brownmath.com/stat/shape.htm

  56. Groeneveld RA, Meeden G (1984) Measuring Skewness and Kurtosis. J R Stat Soc Ser D (The Stat 33:391–399. https://doi.org/10.2307/2987742

  57. Bulmer MG (1979) Principles of Statistics. Dover, New York

    Google Scholar 

  58. Mabit L, Bernard C (2007) Assessment of spatial distribution of fallout radionuclides through geostatistics concept. J Environ Radioact 97:206–219. https://doi.org/10.1016/j.jenvrad.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  59. Manning CD, Raghavan P, Schütze H (2009) An Introduction to information retrieval. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

This work was Supported by the Hunan Provincial Innovation Foundation for Postgraduates (CX20190724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ye, Y. Assessment of soil radioactivity levels and radiation hazards in Guangyao Village, South China. J Radioanal Nucl Chem 329, 679–693 (2021). https://doi.org/10.1007/s10967-021-07818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07818-5

Keywords

Navigation