Skip to main content

Advertisement

Log in

REEs enriched heavy minerals from the river and beach sands of Bangladesh

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The study area includes sand bars carried by the Jamuna River, coastal dunes on Sonadia Island, and the beach sands of the island of Saint Martin’s, all of which are geomorphologically distinct and possibly rich in economically valuable minerals. This study conducted for the first time in Bangladesh to investigate the occurrence of a few RREs such as Ce, La, Th, Zr, and Nd in monazite, zircon, and allanite heavy minerals. SEM–EDS, statistical methods, and heavy mineral analyses were used to determine the existence and significance of REEs in beach and river sand samples. The concentrations of Ag, La, Ce, and Th in the investigated grains of monazite (-Ce) varied, showing an asymmetric distribution, with the MANOVA test indicating statistically significant (p-value = 0.004) differences. Three primary components described almost 84% of all changes in monazite, and zircon on the other hand has a constant Zr content. The MANOVA test result shows that differences in zircon locations on two separate elements are statistically significant (p-value = 0.091). The existence of three rare earth elements (La, Ce, and Nd) in three places has been confirmed by allanite (-Ce), a REE-rich epidote mineral. According to the MANOVA test statistic, differences in allanite mineral study areas on three separate rare elements are not statistically significant (p-value = 0.245). The analytical data will help differentiate and characterize the REE-containing mineral grains in the diverse geological settings across Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Abedin MJ, Rahman MJJ, Sayem AS, Abdullah R (2018) Heavy mineral distribution in sand deposits from the lower reaches of the Jamuna River, Bangladesh. Bangladesh Geo J 24:1–15

    Google Scholar 

  • Agnan Y, Delmas NS, Probst A (2014) Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Sci Total Environ 487:1–12

    Article  Google Scholar 

  • Ahmed SS, Miah MY, Qumruzzaman C, Zaman MN, Alam AKMB, Biswas PK (2010) Alteration and exsolution characteristics of Ilmenites of Moheshkhali Island, Chittagong. Bangladesh Bangladesh J Sci Ind Res 45(1):17–26. https://doi.org/10.3329/bjsir.v45i1.5173

    Article  Google Scholar 

  • Alam S, Hassan MM (1998) The origin of beach rock of St. Martin’s Island of Bay of Bengal, Bangladesh. Oriental Geographer 42(2):21–32

    Google Scholar 

  • Alam NM, Chowdury MI, Kamal M, Ghose S, Islam NM, Mustafa NM, Miah MMN, Ansary MM (1999) The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s bazar. Bangladesh J Environ Radioact 46(2):243–250. https://doi.org/10.1016/S0265-931X(98)00143-X

    Article  Google Scholar 

  • Ameen SMM, Wilde SA, Hossain MS, Das SC, Tapu AT, Zaman MN, Sarma S (2022) Episodic proterozoic magmatism in Northwest Bangladesh: implications for Columbia/Nuna and Rodinia reconstructions. Lithos 412–413:106586. https://doi.org/10.1016/j.lithos.2021.106586

  • Armstrong-Altrin JS, Madhavaraju J, Vega-Bautista F, Ramos-Vázquez MA, Pérez-Alvarado BY, Kasper-Zubillaga JJ, Bessa AZE (2021) Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments SW Gulf of Mexico. Appl Geochem 134:105103. https://doi.org/10.1016/j.apgeochem.2021.105103

    Article  Google Scholar 

  • Armstrong-Altrin JS, Ramos-Vázquez MA, Madhavaraju J, Marca-Castillo ME, Machain-Castillo ML, Márquez-García AZ (2022) Geochemistry of marine sediments adjacent to the Los Tuxtlas Volcanic Complex, Gulf of Mexico: constraints on weathering and provenance. Appl Geochem 141:105321. https://doi.org/10.1016/j.apgeochem.2022.105321

    Article  Google Scholar 

  • Bakhtine MI (1966) Major tectonic features of Pakistan: part II. The Eastern Province Sci Indust 4:89–100

    Google Scholar 

  • Banglapedia (2008 & 2014) Bay of Bengal & Saint Martin’s Island

  • Bari Z, Chowdhury KR, Rahman JJ (2003) Grain size distribution of the Neogene sandstones and beach sands across the Inani-Dakhin Nhila hill ranges, south-east Bangladesh. The Journal of NOAMI 20:1–16

    Google Scholar 

  • Bari Z, Rajib M, Ameen SMM (2011) Heavy mineral assemblages of the beach sands of Kuakata, southern Bangladesh. Jahangirnagar Univ J Sci 34(2):143–158

    Google Scholar 

  • Becker-Haumann R, Preusser F, Chowdhury KR, Khan MSH, Huq NE (2000) A test study of luminescence dating of fluvial sediments from Bangladesh. Bangladesh J Geol 19:25–34

    Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA (2006) Correlated microanalysis of zircon: trace element, δ18O, and U-Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim Cosmochim Acta 70(22):5601–5616. https://doi.org/10.1016/j.gca.2006.08.011

    Article  Google Scholar 

  • Chatfield C, Collins AJ (2018) Introduction to multivariate analysis. Springer, New York, USA

    Book  Google Scholar 

  • Chowdhury MA (1989) Petrography of the sand samples of the Brahmaputra-Jamuna River bars. Geological Survey of Bangladesh 5(5):1–20

    Google Scholar 

  • Chowdhury MI, Sarker MN (2014) Delineation of the surface pattern of heavy mineral deposit of Tulatoli paleo dune within Teknaf beach of Cox’s Bazar district with radiometric survey. Nuclear Science and Applications 23(1&2):1–8

    Google Scholar 

  • Coleman JM (1969) Brahmaputra River: Channel processes and sedimentation. Sediment Geol 3(2-3):129–239

    Article  Google Scholar 

  • Datta DK, Subramanian V (1997) Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna River system in the Bengal Basin, Bangladesh and their environmental implications. Environ Geol 30:181–188. https://doi.org/10.1007/s002540050145

    Article  Google Scholar 

  • Deeba F, Rahman SH, Kabir MZ, Rajib M (2020) Geochemical characterization and presence of rare earth elements in the recent depositions at the Islands of the Eastern Bay of Bengal, Bangladesh. Int J Econ Environ Geol 11(1):40–47. https://doi.org/10.46660/ijeeg.Vol11.Iss1.2020.410

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Harlow, Essex, England; New York, NY; Longman Scientific and Technical

  • Dill HG, Ludwig RR (2008) Geomorphological-sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi). Ore Geol Rev 33(3–4):411–434. https://doi.org/10.1016/j.oregeorev.2007.02.002

    Article  Google Scholar 

  • Donoghue JF, Greenfield MB (1989) Radioactivity of heavy mineral sands as an indicator of coastal sand transport processes. J Coast Res 7:189

    Google Scholar 

  • Ercit TS (2002) The mess that is “allanite.” Canad Miner 40:1411–1419. https://doi.org/10.2113/gscanmin.40.5.1411

    Article  Google Scholar 

  • Giere R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. Rev Mineral Geochem 56(1):431–493. https://doi.org/10.2138/gsrmg.56.1.431

    Article  Google Scholar 

  • Grunsky EC (2010) The interpretation of geochemical survey data. Geochem: Explor Environ Anal 10(1):27–74. https://doi.org/10.1144/1467-7873/09-210

    Article  Google Scholar 

  • Guha DK (1978) Tectonic framework and oil & gas prospects of Bangladesh. In: Proceedings of the 4th annual conference Bangladesh Geological Society. 65–75

  • Hasan ASMM, Hossain I, Rahman MA, Rahman MS, Zaman MN, Biswas PK (2018) FEG-EPMA mapping and Fe-Ti oxide mineral chemistry of Brahmaputra River sediments in Bangladesh: provenance and petrogenetic implications. Arab J Geosci 11:567

    Article  Google Scholar 

  • Hasan ASMM, Hossain I, Rahman MA, Zaman MN, Biswas PK, Alam MS (2022) Chemistry and mineralogy of Zr- and Ti-rich minerals sourced from Cox’s Bazar beach placer deposits, Bangladesh: implication of resources processing and evaluation. Ore Geol Rev 141:104687. https://doi.org/10.1016/j.oregeorev.2021.104687

    Article  Google Scholar 

  • Hofmann AE, Valley JW, Watson EB, Cavosie AJ, Eiler JM (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Mineral Petrol 158(3):317–335. https://doi.org/10.1007/s00410-009-0385-6

    Article  Google Scholar 

  • Hoque ME, Chowdhury SR, Uddin MM, Alam MS, Monwar MM (2013) Grain size analysis of a growing sand bar at Sonadia Island, Bangladesh. Open J Soil Sci 3:71–80. https://doi.org/10.4236/ojss.2013.32008

    Article  Google Scholar 

  • Hoshino M, Kimata M, Nishida N, Kyono A, Shimizu M, Takizawa S (2005) The chemistry of allanite from the Daibosatsu Pass, Yamanashi. Japan Mineral Mag 69(4):403–423. https://doi.org/10.1180/0026461056940259

    Article  Google Scholar 

  • Hoskin PW, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28(7):627–630. https://doi.org/10.1130/0091-7613(2000)28%3C627:REECOZ%3E2.0.CO;2

    Article  Google Scholar 

  • Hoskin PW (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills. Australia Geochim Cosmochim Acta 69(3):637–648. https://doi.org/10.1016/j.gca.2004.07.006

    Article  Google Scholar 

  • Hossain I, Tsunogae T, Rajesh HM, Chen B, Arakawa Y (2007) Palaeoproterozoic U-Pb SHRIMP zircon age from basement rocks in Bangladesh: a possible remnant of the Columbia supercontinent. C R Geosci 339(16):979–986

    Article  Google Scholar 

  • Hossain I, Tsunogae T, Tsutsumi Y, Takahashi K (2018) Petrology, geochemistry and LA-ICP-MS U-Pb geochronology of Paleoproterozoic basement rocks in Bangladesh: an evaluation of calc-alkaline magmatism and implication for Columbia supercontinent amalgamation. J Asian Earth Sci 157:22–39

    Article  Google Scholar 

  • Hossain M, Khan M, Hossain S, Chowdhury KR, Abdullah R (2019) Synthesis of the tectonic and structural elements of the Bengal Basin and its surroundings. In Tectonics and structural geology: Indian context. Springer, Cham, 135–218. https://doi.org/10.1007/978-3-319-99341-6_6

  • Hossain MS, Ameen SMM, Bari Z, Zaman MN (2015a) Petrography and microtextural characteristics of the basement complex of GDH-31, Gaibandha. Bangladesh Jahangirnagar Univ J Sci 37(1):39–54

    Google Scholar 

  • Hossain MS, Ameen SMM, Bari Z, Zaman MN (2015b) Charnockite in the basement complex of Bangladesh: petrologic and geochemical characteristics. Bangladesh Geo J 21:1–14

    Google Scholar 

  • Hossain MS, Ameen SM, Tapu AT, Hossain MY (2016) Heavy mineral concentration along the Kawar Char Island, south-west Bangladesh and its economic potentiality. Jahangirnagar Univ J Sci 39(1):131–146

    Google Scholar 

  • Hossain MS, Aziz MT, Shahriar MS, Ritu AA (2021) Heavy mineral analysis of Jamuna River sediments. Bangladesh J Geol Soc India 97(5):470–480. https://doi.org/10.1007/s12594-021-1713-3

    Article  Google Scholar 

  • Hossain SM, Hoque M, Hossain A (2002) Land accretion along the coastline of Bangladesh with special emphasis on the Meghna estuary. The Journal of NOAMI 19(1):1–10

    Google Scholar 

  • Humphries M (2009) Rare earth elements: The global supply chain, Specialist in energy policy, Congressional research service. USGS. The Global Supply Chain Establish a Stockpile

  • IAEA (2011) Radiation protection and NORM residue management in the production of rare earths from thorium containing minerals. Vienna, International Atomic Energy Agency, Safety Reports Series 68:259

    Google Scholar 

  • Islam MN (2000) Braiding and channel morphodynamics: the Brahmaputra-Jamuna River, Bangladesh. Doctoral dissertation, The University of Hull, Imaging Services North, Boston Spa, Wetherby, West Yorkshire

  • Jasy JB, Rahman MJJ, Yeasmin R (2010) Sand petrology of the exposed bar deposits of the Brahmaputra-Jamuna River, Bangladesh: implications for provenance. Bangladesh Geo J 16:1–22

    Google Scholar 

  • Kabir SM (2006) Report on soil status & rock and sedimentations of St.Martin’s Island. Conservation of Bio-Diversity, Marine Park Establishment and Ecotourism Development Project at St. Martin’s Island. Department of Environment, Dhaka, Bangladesh

  • Kabir MZ, Deeba F, Rasul MG, Majumder RK, Khalil MI, Islam MS (2018) Heavy minerals distribution and geochemical studies of coastal sediments at Sonadia Island. Bangladesh Nuclear Science and Applications 27(1&2):1–5

    Google Scholar 

  • Kumar A, Das LK, Roy PNS, Singh AK (2019) Prognosticating buried potential mineral deposits in virgin areas of Odisha and adjoining regions, India, using 3D Euler’s deconvolution technique on gravity data for detailed exploration in future. Ore Geol Rev 104:373–383. https://doi.org/10.1016/j.oregeorev.2018.11.014

    Article  Google Scholar 

  • Liu X, Dong S, Xue H, Zhou J (1999) Significance of allanite-(Ce) in granitic gneisses from the ultrahigh-pressure metamorphic terrane, Dabie Shan, central China. Mineral Mag 63(4):579–586. https://doi.org/10.1180/minmag.1999.063.4.10

    Article  Google Scholar 

  • Machado N, Schrank A, Noce CM, Gauthier G (1996) Ages of detrital zircon from Archean-Paleoproterozoic sequences: implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet Sci Lett 141(1–4):259–276. https://doi.org/10.1016/0012-821X(96)00054-4

    Article  Google Scholar 

  • Majlis ABK, Islam MA, Khasru MH, Ahsan MK (2013) Protected to open basin depositional system: an appraisal for the Late Quaternary evolution of the Moheshkhali-Kutubdia coastal plain. Bangladesh Bangladesh J Geol 26:64–77

    Google Scholar 

  • Mange MA, Maurer HFW (1992) Heavy minerals in color. Chapman and Hall, London, p 133

    Book  Google Scholar 

  • Manuel R, Brito G, Chichorro M, Rosa C (2017) Remote sensing for mineral exploration in central Portugal. Minerals 7:184. https://doi.org/10.3390/min7100184

    Article  Google Scholar 

  • McClenaghan MB, Paulen R, Kjarsgaard I, Fortin R (2017) Rare earth element indicator minerals: an example from the Strange Lake deposit, Quebec and Labrador, eastern Canada. In Application of Indicator Mineral Methods to Bedrock and Sediments. Geological Survey of Canada Open File 8345

  • Mertler CA, Reinhart RV (2016) Advanced and multivariate statistical methods. Practical Application and Interpretation. 5th ed., Routledge, London, UK, 374

  • Nayak B, Mohapatra RK, Mangaraj M, Venkatesh AS, Behera PN (2019) Mineralogical characterisation of beach placers at Kantiaghar in Ganjam district. Odisha J Geol Soc India 93(2):194–198. https://doi.org/10.1007/s12594-019-1150-8

    Article  Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65(22):4215–4229. https://doi.org/10.1016/S0016-7037(01)00711-6

    Article  Google Scholar 

  • Price JR, Velbel MA, Patino LC (2005) Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, USA. Am Mineral 90(1):101–114. https://doi.org/10.2138/am.2005.1444

    Article  Google Scholar 

  • Pirkle FL, Podmeyer DA (2000) Zircon: origin and uses. Transactions 292

  • Rahman MH, Islam MA, Shine FMM, Ahmed F (1994) Heavy-mineral studies of the Silkhali-Teknaf beach, dune and cliff sands, Cox’s Bazar. Bangladesh Indian Minerals 48(3):167–174

    Google Scholar 

  • Rahman MJJ, Bari Z, Chowdhury KR, Suzuki S (2008) Heavy mineral composition of the Neogene sandstones and beach sands across the Inani-Dakhin Nhila area, Southeast Bangladesh: Implication for provenance. Journal of the Sedimentological Society of Japan 67(1):3–17. https://doi.org/10.4096/jssj.67.3

    Article  Google Scholar 

  • Rahman MA, Biswas PK, Zaman MN, Miah MY, Hossain T, Imamul Huq SM (2012) Characterization of the sand of Brahmaputra River of Bangladesh. Bangladesh J Sci Ind Res 47:167–172. https://doi.org/10.3329/bjsir.v47i2.11448

    Article  Google Scholar 

  • Rahman MA, Pownceby MI, Haque N, Bruckard WJ, Zaman MN (2014) Characterization of titanium-rich heavy mineral concentrates from the Brahmaputra River basin, Bangladesh. Trans Inst Min Metall 123:222–233. https://doi.org/10.1179/1743275814Y.0000000059

    Article  Google Scholar 

  • Rahman MJJ, Pownceby MI, Rana MS (2020a) Occurrence and distribution of valuable heavy minerals in sand deposits of the Jamuna River, Bangladesh. Ore Geol Rev 116:103273. https://doi.org/10.1016/j.oregeorev.2019.103273

    Article  Google Scholar 

  • Rahman A, Tardio J, Bhargava SK, Zaman MN, Hasan ASMM, Torpy A, Pownceby MI (2020b) Comparison of the chemistry and mineralogy of ilmenite concentrates sourced from fluvial (Brahmaputra River) and beach placer (Cox’s Bazar) deposits, Bangladesh. Ore Geol Rev 117:103271. https://doi.org/10.1016/j.oregeorev.2019.103271

    Article  Google Scholar 

  • Rajib M, Moniruzzaman M, Oguchi CT (2016) Economic minerals in fluvial bar sediment of Jamuna River, Bangladesh: geomorphic inference for prospecting rare earth oxides. Transactions, Japanese Geomorphological Union 37(3):363–377

    Google Scholar 

  • Rajib M, Oguchi CT (2020) Radioactive and rare earth containing materials in beach minerals of Banglades: a SEM study. International Conference on Earth and Environmental Sciences and Technology, Dhaka, Bangladesh

  • Ramesh R, Ramanathan AL, Ramesh S, Purvaja R, Subramanian V (2000) Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan River system. Geochem J 34(4):295–319. https://doi.org/10.2343/geochemj.34.295

    Article  Google Scholar 

  • Ramos-Vázquez MA, Armstrong-Altrin JS (2019) Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Mar Pet Geol 110:650–675. https://doi.org/10.1016/j.marpetgeo.2019.07.032

    Article  Google Scholar 

  • Ramos-Vázquez MA, Armstrong-Altrin JS (2021) Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico. J Palaeogeogr 10:20. https://doi.org/10.1186/s42501-021-00101-4

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206. https://doi.org/10.1016/S0883-2927(01)00066-X

    Article  Google Scholar 

  • Rao NS, Misra S (2009) Sources of Monazite sand in Southern Orissa beach placer, Eastern India. J Geol Soc India 74:357–362. https://doi.org/10.1007/S12594-009-0140-7

    Article  Google Scholar 

  • Richardson WR, Thorne CR (2001) Multiple thread flow and channel bifurcation in a braided river: Brahmaputra–Jamuna River, Bangladesh. Geomorphology 38(3-4):185–196. https://doi.org/10.1016/S0169-555X(00)00080-5

  • Ritchie TW, Scott JM, Craw D (2019) Garnet compositions track longshore migration of beach placers in western New Zealand. Econ Geol 114(3):513–540. https://doi.org/10.5382/econgeo.4647

    Article  Google Scholar 

  • Robb L (2004) Introduction to ore-forming processes. Wiley-Blackwell, Oxford, p 373

    Google Scholar 

  • Roback RC, Walker NW (1995) Provenance, detrital zircon U-Pb geochronometry, and tectonic significance of Permian to Lower Triassic sandstone in southeastern Quesnellia, British Columbia and Washington. Geol Soc Am Bull 107(6):665–675. https://doi.org/10.1130/0016-7606(1995)107%3C0665:PDZUPG%3E2.3.CO;2

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

    Article  Google Scholar 

  • Sadeghi M, Morris GA, Carranza EJM, Ladenberger A, Andersson M (2013) Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry. J Geochem Explor 133:160–175. https://doi.org/10.1016/j.gexplo.2012.10.015

    Article  Google Scholar 

  • Schmidt RG, Asad SA (1963) A reconnaissance survey of radioactive beach sand at Cox’s Bazar. Int Geol Report 3, Geological Survey of Pakistan 1–14

  • Seddique AA, Hoque A (2015) Heavy mineral assemblages at Cox’s Bazar paleobeach core sediments, Cox’s Bazar, Bangladesh. Int J Emerg Technol Adv Eng 5(9):264–269

    Google Scholar 

  • Shahriar MS, Ameen SMM, Hossain MS, Hossain MS et al (2020) Revealing the basement in Barapukuria: a geochemical study of a Gondwana coal basin basement from northwest Bangladesh. J Geol Soc India 95(6):571–586. https://doi.org/10.1007/s12594-020-1484-2

    Article  Google Scholar 

  • Silva YJAB, Nascimento CWA, Cantalice JRB, Silva YJAB, Cruz CMCA (2015) Watershed scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environ Monit Assess 187:558–568

    Article  Google Scholar 

  • Silva YJAB, Nascimento CWA, Van Straaten P, Biondi CM, Souza VS, Silva YJAB (2017) Effect of I- and S-type granite parent material mineralogy and geochemistry on soil fertility: a multivariate statistical and GIS-based approach. CATENA 149:64–72. https://doi.org/10.1016/j.catena.2016.09.001

    Article  Google Scholar 

  • Singh R, Venkatesh AS, Sudhakar C, Sethy SN, Babu KP (2020) Exploration for strategic placer mineral deposits in a fluctuating shoreline: depositional environment and mineralogical characterization of the NE Odisha coast placers India. Ore Geol Rev 127:103850. https://doi.org/10.1016/j.oregeorev.2020.103850

    Article  Google Scholar 

  • Sircombe KN (1999) Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment Geol 124(1–4):47–67. https://doi.org/10.1016/S0037-0738(98)00120-1

    Article  Google Scholar 

  • Soltani F, Moarefvand P, Alinia F, Afzal P (2019) Characterization of rare earth elements by coupling multivariate analysis, factor analysis, and geostatistical simulation; case-study of Gazestan deposit, central Iran. J Min Environ 10(4):929–945

    Google Scholar 

  • Su N, Yang S, Yue W (2017) Rare earth element chemistry indicates chemical alteration of zircons during the evolution of weathering profile. Acta Geochim 36(3):433–436. https://doi.org/10.1007/s11631-017-0184-0

    Article  Google Scholar 

  • Taboada T, Rodriguez-Lado L, Ferro-Vazquez C, Stoops G, Cortizas AM (2016) Chemical weathering in the volcanic soils of Isla Santa Cruz (Galapagos Islands, Ecuador). Geoderma 261:160–168. https://doi.org/10.1016/j.geoderma.2015.07.019

    Article  Google Scholar 

  • Tahli L, Wahyudi T (2016) A characteristic study of popay zircon sand used for ceramics, refractory and foundry raw materials. Indonesian Min J 19(1):1–17

    Google Scholar 

  • Tapu AT, Ameen SMM, Abdullah R, Zaman MN, Hossain MS, Das SC (2016) Geochemical evaluation of the diorite basement in Barapaharpur, Rangpur, northwest Bangladesh. Bangladesh Geo J 22:17–37

    Google Scholar 

  • Tay SL, Scott JM, Palmer MC, Reid MR, Stirling CH (2021) Occurrence, geochemistry and provenance of REE-bearing minerals in marine placers on the West Coast of the South Island, New Zealand. New Zealand J Geol Geophys 64(1):89–106

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  • Templ M, Filzmoser P, Reimann C (2006) Cluster analysis applied to regional geochemical data: problems and possibilities. Vienna University of Technology, Austria, Institut f. Statistik u. Wahrscheinlichkeitstheorie

    Google Scholar 

  • Tzifas IT, Papadopoulos A, Misaelides P, Godelitsas A, Göttlicher J, Tsikos H, Gamaletsos PN, Luvizotto G, Karydas AG, Petrelli M, Noli F (2019) New insights into mineralogy and geochemistry of allanite-bearing Mediterranean coastal sands from Northern Greece. Geochem 79(2):247–267. https://doi.org/10.1016/j.chemer.2019.05.002

    Article  Google Scholar 

  • Vassas C, Pourcelot L, Vella C, Carpena J, Pupin JP, Bouisset P, Guillot L (2006) Mechanisms of enrichment of natural radioactivity along beaches of Camargue. France. J Environ Radioact 91(3):146–159

    Article  Google Scholar 

  • Voncken JHL (2016) The ore minerals and major ore deposits of the Rare Earths. In The Rare Earth Elements (15–52). Springer, Cham. https://doi.org/10.1007/978-3-319-26809-5_2

  • Wang G, Du W, Carranza EJM (2017) Remote sensing and GIS prospectivity mapping for magmatic-hydrothermal base-and precious-metal deposits in the Honghai district, China. J African Earth Sci 128:97–115. https://doi.org/10.1016/j.jafrearsci.2016.06.020

    Article  Google Scholar 

  • Warrick RA, Bhuiya AH, Mitchell WM, Murty TS, Rasheed KBS (1993) Sea level changes in the Bay of Bengal. Briefing Document No. 2, BUP, C.E.A.R.S. and UEA Norwich. 24

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151(4):413–433. https://doi.org/10.1007/s00410-006-0068-5

    Article  Google Scholar 

  • Weng Z, Jowitt SM, Mudd GM, Haque N (2015) A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol 110:1925–1952. https://doi.org/10.2113/econgeo.110.8.1925

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2014) Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem Explor Environ Anal 14(1):45–58. https://doi.org/10.1144/geochem2012-144

    Article  Google Scholar 

  • Zaman M, Schubert M, Antao S (2012a) Elevated radionuclide concentrations in heavy mineral-rich beach sands in the Cox’s Bazar region, Bangladesh and related possible radiological effects. Isot Environ Healt S 48(4):512–525. https://doi.org/10.1080/10256016.2012.696542

    Article  Google Scholar 

  • Zaman MN, Rahman MA, Biswas PK (2012b) Sands of the Brahmaputra River Basin: Identification of Valuable Heavy Minerals (VHM) in the sands of the Brahmaputra River. Lap Lambert Academic Publishing. 21–34

Download references

Acknowledgements

Md. Towhidul Aziz, Al Hasan Ritu of Jahangirnagar University, and Md. Sazzad Hossain of Chittagong University, Bangladesh, deserve recognition for assisting me in the sample collectingon samples in the field. We would like to express gratitude towards the editor and anonymous reviewers for their reviews, constructive comments, and suggestions on the manuscript.

Funding

This study received financial support from Faculty of Mathematical and Physical Sciences Research Grants, Jahangirnagar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sakaouth Hossain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Rahman, A., Shahriar, M.S. et al. REEs enriched heavy minerals from the river and beach sands of Bangladesh. Arab J Geosci 16, 91 (2023). https://doi.org/10.1007/s12517-023-11191-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11191-w

Keywords

Navigation