Skip to main content

Advertisement

Log in

Mapping of subsurface geological structures and depth to the top of magnetic basement in Bornu Basin and its environs, NE Nigeria, for possible hydrocarbon presence

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study aims to provide a new insight into the subsurface geological structures and the depth estimates of the sediments aiding hydrocarbon maturation and accumulation within the Bornu Basin, NE Nigeria, via 2D magnetic structural and depth modelling. The total magnetic field anomaly map was reduced to the magnetic equator (RTE-TMI) to align the magnetic anomalies over their causative bodies. The resulting RTE-TMI map and the first- and second-order vertical derivative maps distinctively mapped the intra-sedimentary volcanic rocks and shallow to deep-seated structures. On the other hand, the source parameter imaging (SPI) and 2D depth constrained magnetic anomaly models determined the depths of these geologic features. The dominant structures within the study area trend NE-SW, NNE-SSW, ENE-WSW, ESE-WNW and NW–SE. SPI model indicated that the thickness of sedimentary beds ranges from 1.02 to 5.55 km, with a maximum thickness of ≥ 3.0 km obtained in the central, central eastern, southwestern, northeastern, eastern and western parts of the study area, corresponding to Gubio, Gadayi, Nafada, Marte, Dikwa and Gabdam, respectively. The 2D magnetic depth models from the seven profiles taken on the RTE-TMI map in N-S and SE-NW across significant anomalies revealed lithological boundaries and the thickness of sediments ranging from 1.0 km to a maximum thickness of 11.5 km. The thickness of sediments of 3.0 to 11.5 km is sufficient for hydrocarbon maturation and accumulation in Bornu Basin (a typical rift basin), with the delineated embedded structures serving as migratory paths or traps for the generated hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abubakar MB (2014) Petroleum potentials of the Nigerian Benue Trough and Anambra Basin: a regional synthesis. Nat Resour 5(1):25–58. https://doi.org/10.4236/nr.2014.5100

  • Aderoju AB, Ojo SB, Adepelumi AA, Edino F (2016) A reassessment of hydrocarbon prospectivity of the chad basin, Nigeria, using magnetic hydrocarbon indicators from high-resolution aeromagnetic imaging. Ife J Sci 18(2):503–20

  • Adewumi T, Salako KA (2018) Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North Central, Nigeria. Egypt J Pet 27(4):759–767

    Article  Google Scholar 

  • Adewumi T, Salako KA, Usman AD, Udensi EE (2021) Heat flow analyses over Bornu Basin and its environs, Northeast Nigeria, using airborne magnetic and radiometric data: implication for geothermal energy prospecting. Arab J Geosci 14(14):1–19

    Article  Google Scholar 

  • Adewumi T, Salako KA, Salami MK, Mohammed MA, Udensi, EE (2017) Estimation of sedimentary thickness using spectral analysis of aeromagnetic data over part of Bornu Basin, Northeast, Nigeria. Asian J Phys Chem Sci 1–8

  • Ahmed KS, Liu K, Moussa H, Liu J, Ahmed HA, Kra KL (2022) Assessment of petroleum system elements and migration pattern of Borno (Chad) Basin, northeastern Nigeria. J Petrol Sci Eng 208:109505

    Article  Google Scholar 

  • Ajakaiye DE, Award MB, Ojo SE, Hall DH, Miller TW (1986) Aeromagnetic anomalies and tectonics trends in and around the Benue. Nature 319:582–584

    Article  Google Scholar 

  • Ajana O, Udensi EE, Momoh M, Rai JK, Muhammad SB (2014) Spectral depths estimate of subsurface structures in parts of Borno Basin, Northeastern Nigeria, using aeromagnetic data. IOSR J Appl Geol Geophys 2(2):55–60

    Article  Google Scholar 

  • Akanji AO, Sanuade OA, Osinowo OO, Okafor OI (2020) Interpretation of high resolution aeromagnetic data for hydrocarbon exploration in Bornu Basin, Northeastern, Nigeria. Ann Geophys 63(2):GM222–GM222

    Article  Google Scholar 

  • Akiishi M, Udochukwu BC, Tyovenda AA (2019) Determination of hydrocarbon potentials in Masu area in northeastern Nigeria using forward and inverse modeling of aeromagnetic and aerogravity data. SN Appl Sci 1(8):1–15

    Article  Google Scholar 

  • Anakwuba EK, Onwumesi AG, Chinwuko AI, Onuba LN (2011) The interpretation of aeromagnetic anomalies over Maiduguri-Dikwa depression, Chad Basin, Nigeria: a structural review. Arch Appl Sci Res 3(3):1757–1766

    Google Scholar 

  • Anakwuba EK, Chinkwuko A (2012) Re-evaluation of hydrocarbon potential of Eastern Part of the Chad Basin, Nigeria: an aeromagnetic approach. Search and Discovery Article 2(1):78–90

  • Anudu GK, Stephenson RA, Macdonald DI (2014) Using high-resolution aeromagnetic data to recognise and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria. J Afr Earth Sci 1(99):625–636

    Article  Google Scholar 

  • Arogundade AB, Hammed OS, Awoyemi MO, Falade SC, Ajama OD, Olayode FA, Olabode AO (2020) Analysis of aeromagnetic anomalies of parts of Chad Basin, Nigeria, using high-resolution aeromagnetic data. Model Earth Syst Environ 6(3):1545–1556

    Article  Google Scholar 

  • Avbovbo AA, Ayoola EO, Osahon GA (1986) Depositional and structural styles in Chad Basin of northeastern Nigeria. Bull Am Assoc Pet Geol 70:1787–1798

    Google Scholar 

  • Awoyemi MO, Falade SC, Arogundade AB, Hammed OS, Ajama OD, Falade AH, Adebiyi LS, Dopamu KO, Alejolowo EA (2022) Magnetically inferred regional heat flow and geological structures in parts of Chad Basin, Nigeria and their implications for geothermal and hydrocarbon prospects. J Petrol Sci Eng 213:110388

  • Benkhelil J (1988) Structure et Evolution Geodynamique du Bassin Intracontinental de la5Benoue (Nigeria). Bul Cent Rech Explor- Prod Elf-Aquitaine 12:29–128

    Google Scholar 

  • Bird DE (1997) Primer: interpreting magnetic data. Am Assoc Pet Geol Explor 8(5):18–21

    Google Scholar 

  • Biswas M, Puniya MK, Gogoi MP, Dasgupta S, Mukherjee S, Kar NR (in press) Morphotectonic analysis of petroliferous Barmer rift basin (Rajasthan, India). J Earth Syst Sci

  • Chukwunonso OC, Godwin OA, Kenechukwu AE, Ifeanyi CA, Emmanuel IB, Ojonugwa UA (2012) Aeromagnetic interpretation over Maiduguri and environs of Southern Chad Basin, Nigeria. J Earth Sci Geotech Eng 2(3):77–93

    Google Scholar 

  • Cooper GR, Cowan DR (2004) Filtering using variable order vertical derivatives. Comput Geosci 30(5):455–459

  • Dasgupta S, Mukherjee S (2017) Brittle shear tectonics in a narrow continental rift: asymmetric non-volcanic Barmer basin (Rajasthan, India). J Geol 125:561–591

    Article  Google Scholar 

  • Dasgupta BM, Mukherjee S, Chatterjee R (2022) Structural evolution and sediment depositional system along the transform margin-Palar-Pennar basin, Indian east coast. J Petrol Sci Eng 211:110155

    Article  Google Scholar 

  • Dasgupta S, Mukherjee S (2019) Remote sensing in lineament identification: examples from western India. In: Billi A, Fagereng A (Eds) Problems and Solutions in Structural Geology and Tectonics. Developments in Structural Geology and Tectonics Book Series. Vol 5. Series Editor: Mukherjee S. Elsevier. ISSN: 2542–9000

  • Ekwok SE, Achadu OIM, Akpan AE, Eldosouky AM, Ufuafuonye CH, Abdelrahman K, Gómez-Ortiz D (2022) Depth estimation of sedimentary sections and basement rocks in the Bornu Basin, Northeast Nigeria using high-resolution airborne magnetic data. Minerals 12(3):285

    Article  Google Scholar 

  • Ekwok SE, Akpan AE, Kudamnya EA (2020) Exploratory mapping of structures controlling mineralization in Southeast Nigeria using high resolution airborne magnetic data. J Afr Earth Sci 162:103700

  • Eldosouky AM, Elkhateeb SO, Ali A, Kharbish S (2020) Enhancing linear features in aeromagnetic data using directional horizontal gradient at Wadi Haimur area, South Eastern Desert, Egypt. Carpathian J Earth Environ Sci 15(2):323–6

    Article  Google Scholar 

  • Eldosouky AM, El-Qassas RA, Pour AB, Mohamed H, Sekandari M (2021) Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Adv Space Res 68(9):3641–3662

  • Eldosouky AM, Pham LT, Abdelrahman K, Fnais MS, Gomez-Ortiz D (2022) Mapping structural features of the Wadi Umm Dulfah area using aeromagnetic data. Journal of King Saud University-Science 34(2):101803

  • Elkhateeb SO, Eldosouky AM, Khalifa MO, Aboalhassan M (2021) Probability of mineral occurrence in the Southeast of Aswan area, Egypt, from the analysis of aeromagnetic data. Arab J Geosci 14:1514

    Article  Google Scholar 

  • Emujakporue G, Nwankwo C, Nwosu L (2012) Integration of well logs and seismic data for prospects evaluation of an X field, onshore Niger Delta, Nigeria. Int J Geosci 3:872–877

    Article  Google Scholar 

  • Genik GJ (1992) Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics 213:169–185

    Article  Google Scholar 

  • Genik GJ (1993) Petroleum geology of the Cretaceous-Tertiary Rift Basins in Niger, Chad and the Central African Republic. Bull Am Assoc Pet Geol 77:1405–1434

    Google Scholar 

  • GETECH Group Plc (2007) Advanced processing and interpretation of gravity magnetic data. GETECH (Geophysical Exploration and Technology) Group Plc.Kitson house Elmete hall leeds, UK 22p

  • Guiraud R, Binks RM, Fairhead JD, Wilson M (1992) Chronology and geodynamic setting of Cretaceous-Cenozoic rifting in West and Central Africa. Tectonophysics 213(1–2):227–234

    Article  Google Scholar 

  • Isogun MA (2005) Quantitative interpretation of aeromagnetic data of Chad Basin, Bornu State, Nigeria.Unpublished.M.sc. Thesis, O.A.U Ile- Ife

  • Isyaku AA, Rust D, Teeuw R, Whitworth M (2016) Integrated well log and 2-D seismic data interpretation to image the subsurface stratigraphy and structure in northeastern Bornu (Chad) basin. J Afr Earth Sc 121:1–15

    Article  Google Scholar 

  • Kar NK, Mani D, Mukherjee S, Dasgupta S, Puniya MK, Kaushik AK, Biswas M, Babu EVSSK (2022) Source rock properties and kerogen decomposition kinetics of Eocene shales from petroliferous Barmer basin, western Rajasthan, India. J Nat Gas Sci Eng 100:104497

    Article  Google Scholar 

  • Lawal TO, Nwankwo LI (2014) Wavelet analysis of high resolution aeromagnetic data over part of Chad Basin, Nigeria. Ilorin J Sci 1:110–120

    Google Scholar 

  • Lawal KM, Umego MN, Ojo SB (2007) Depth-to-basement mapping using fractal technique: application to the Chad Basin, Northeastern Nigeria. Nigerian J Phys 19(1):75–88

    Google Scholar 

  • Lawal TO, Nwankwo LI, Akoshile CO (2015) Wavelet analysis of aeromagnetic data of Chad Basin, Nigeria. Afr Rev Phys 10:0016

    Google Scholar 

  • Melouah O, Eldosouky AM, Ebong ED (2021) Crustal architecture, heat transfer modes and geothermal energy potentials of the Algerian Triassic provinces. Geothermics 96:102211

  • Minelli L, Speranza F, Nicolosi I, D’Ajello Caracciolo F, Carluccio R, Chiappini S, Messina A, Chiappini M (2018) Aeromagnetic investigation of the central Apennine Seismogenic Zone (Italy): from basins to faults. Tectonics 37:1435–1453. https://doi.org/10.1002/2017TC004953

    Article  Google Scholar 

  • Nabilou M, Afzal P, Arian M, Adib A, Kheyrollahi H, Foudazi M, Ansarirad P (2022) The relationship between Fe mineralization and magnetic basement faults using multifractal modeling in the Esfordi and Behabad Areas (BMD), Central Iran. Acta Geologica Sinica-English Edition 96(2):591–606

    Article  Google Scholar 

  • Nigerian Geological Survey Agency (NGSA) (2005) Newsletter

  • Obaje NG (2009) Geology and mineral resources of Nigeria. Lecture Notes in Earth Sciences. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Obaje NG, Wehner H, Scheeder G, Abubakar MB, Jauro A (2004) Hydrocarbon prospectivity of Nigeria’s inland basins: from the viewpoint of organic geochemistry and organic petrology. AAPG Bull 87:325–353

    Article  Google Scholar 

  • Ogungbesan G, Adedosu, T, Raji M (2020) Petroleum potential of late Cretaceous shale of Wadi-1 Well, Chad Basin, Northeastern Nigeria. In: 82nd EAGE Annual Conference & Exhibition. 2020(1):1–5

  • Okosun EA (1992) Cretaceous ostracod biostratigraphy from Chad basin in Nigeria. J Afr Earth Sci 14(3):327–339

    Article  Google Scholar 

  • Okosun EA (1995) Review of the geology of Bornu Basin. J Min Geol 31:113–122

    Google Scholar 

  • Okpikoro EF, Olorunniwo MA (2010) The application of seismic-log sequence stratigraphy in mapping stratigraphic traps and reservoirs’ facies in Afam channel area, Niger Delta. Glob J Geol Sci 8(1)

  • Okpoli CC, Akingboye AS (2020) Application of airborne gravimetry data for litho-structural and depth characterisation of Precambrian Basement Rock (Northwestern Nigeria). Geophysica 55:3–21

    Google Scholar 

  • Ola PS (2018) Source rock evaluation of the shale beds penetrated by Kinasar-1 Well, Se Bornu Basin, Nigeria. Open J Geol 8(11):1056

    Article  Google Scholar 

  • Olabode SO, Adekoya JA, Ola PS (2015) Distribution of sedimentary formations in the Bornu Basin, Nigeria. Pet Explor Dev 42(5):674–682

    Article  Google Scholar 

  • Olugbemiro RO, Ligouis B, Abaa SI (1997) The Cretaceous series in the Chad Basin, NE Nigeria: source rock potential and thermal maturiy. J Petrol Geol 20:51–68

    Article  Google Scholar 

  • Pham LT, Eldosouky AM, Oksum E, Saada SA (2020) A new high resolution filter for source edge detection of potential field data. Geocarto Int 17:1–8

    Google Scholar 

  • Ramadas G, Himabindu D, Ramaprasada IB (2004) Magnetic basement along the Jadcharla –Vasco transect, Dharwar craton India. Curr Sci 86(11):1548–1553

    Google Scholar 

  • Razavi Pash R, Davoodi Z, Mukherjee S, Hashemi-Dehsarvi L, Ghasemi-Rozveh T (2021) Interpretation of aeromagnetic data to detect the deep-seated basement faults in fold thrust belts: NW part of the petroliferous Fars province, Zagros belt, Iran. Mar Pet Geol 133:105292

    Article  Google Scholar 

  • Saada SA, Mickus K, Eldosouky AM, Ibrahim A (2021) Insights on the tectonic styles of the Red Sea rift using gravity and magnetic data. Mar Pet Geol 1(133):105253

    Article  Google Scholar 

  • Saada SA, Eldosouky AM, Kamel M, El Khadragy A, Abdelrahman K, Fnais MS, Mickus K (2022) Understanding the structural framework controlling the sedimentary basins from the integration of gravity and magnetic data: a case study from the east of the Qattara Depression area, Egypt. J King Saud Univ-Sci 34(2):101808

    Article  Google Scholar 

  • Salako KA (2014) Depth to basement determination using Source Parameter Imaging (SPI) of aeromagnetic data: an application to upper Benue Trough and Borno Basin, Northeast, Nigeria. Acad Res Int 5(3):74

    Google Scholar 

  • Salako KA, Udensi EE (2015) Two dimentional modeling of subsurface structure over upper Benue trough and Bornu basin in North eastern Nigeria. Nigerian J Technol Res 10(1):94–104

    Article  Google Scholar 

  • Selim EI, Aboud E (2012) Determination of sedimentary cover and structural trends in the Central Sinai area using gravity and magnetic data analysis. J Asian Earth Sci 43(2012):193–206

    Article  Google Scholar 

  • Smith RS, Thurston JB, Dai T, Macleod IN (1998) The improved source parameter imaging method. Geophys Prospect 46:141–151

    Article  Google Scholar 

  • Talwani M, Walter K (2003) Exploration geophysics. Encyclopedia of Physical Science and Technology (Third Edition), pp 709 – 726

  • Thurston JB, Smith RS (1997) Automatic conversion of magnetic data to depth dip, and susceptibility contrast using the SPI™ method. Geophysics 62:807–813

    Article  Google Scholar 

  • Thurston JB, Smith RS, Guillon JC (2002) A multimodel method for depth estimation from magnetic data. Geophysics 67(2):555–561

    Article  Google Scholar 

  • Thurston JB, Smith RS, Guillon JC (1999) Model-independent depth estimation with the SPI™ method. In: SEG technical program expanded abstracts, society of exploration geophysicists. pp 403–406

  • Wang J, Yao C, Li Z, Zheng Y, Shen X, Zeren Z, Liu W (2020) 3D inversion of the Sichuan Basin magnetic anomaly in South China and its geological significance. Earth, Planets and Space 72(1):1–10

    Article  Google Scholar 

  • Woakes M, Rahaman MA, Ajibade AC (1987) Some metallogenetic features of the Nigerian basement. J Afr Earth Sc 6(5):655–664

    Google Scholar 

  • Wright JB (1985) Geology and mineral deposits of West Africa. Allen and Unwin, London, p 189

    Google Scholar 

  • Zaborski PM, Ugodulunwa F, Idornigie A, Nnabo P, Ibe K (1998) Stratigraphy and structure of the Cretaceous Gongola basin, northeast Nigeria. Bull Centres Rech Explor-Prod Elf-Aquitaine 21(for 1997):153–185

    Google Scholar 

  • Zanguina M, Bruneton A, Gonnard R (1998) An introduction to the petroleum potential of Niger. J Pet Geol 21(1):83–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiwo Adewumi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewumi, T., Salako, A.K., Muztaza, N.M. et al. Mapping of subsurface geological structures and depth to the top of magnetic basement in Bornu Basin and its environs, NE Nigeria, for possible hydrocarbon presence. Arab J Geosci 15, 1521 (2022). https://doi.org/10.1007/s12517-022-10818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10818-8

Keywords

Navigation