Skip to main content

Advertisement

Log in

Geodetic analysis for investigating possible seismo-ionospheric precursors related to the Ain Témouchent earthquake of December 22, 1999, in NW Algeria

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main aim of this research focuses on the seismo-geodetic data integration to identify the origin-time of seismic precursors through the ionospheric total electron content (TEC) parameter. The case study concerns the moderate-sized earthquake (Mw = 5.7) that occurred in Ain Témouchent-northwestern Algeria on December 22, 1999. The adopted approach is to reproduce the Global Positioning System (GPS)_TEC time-series signal in order to identify large-amplitude electron density perturbations in the ionized layer of the Earth’s atmosphere. Thus, we propose an analytical and interpretive method to identify the seismo-ionospheric precursor occurrence time of the polarized signal during the earthquake preparation phase. For this purpose, the use of geodetic data derived from signal processing of dual-frequency permanent ground-based GPS/Global Navigation Satellite Systems (GNSS) receivers allowed us to identify ionospheric disturbances preceding the triggering of the mainshock. Furthermore, modeling the time occurrence of aftershocks revealed a strong correlation exists between the seismo-ionospheric precursors and the main aftershocks. Space geodesy techniques integrated into seismic networks achieve valuable enhancement to reinforce the Earthquake and Tsunami Early Warning System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in https://cddis.nasa.gov/archive/gnss/data/ and https://www.ign.es/web/en/ign/portal/gds-gnss-datos-rinex.

Code availability

Not applicable.

Notes

  1. Estaciones de Referencia GNSS-Instituto Geográfico Nacional de España: the Spanish geodetic network of local GNSS reference stations. Nowadays, more than 100 permanent GPS/GNSS stations are distributed throughout the Spanish territory (five stations were available during our seismo-geodetic prediction study).

  2. The Receiver INdependent EXchange: an internationally recognized format for the easy exchange of collected raw GNSS data (used, here, for geodetic post-processing of the Rinex GPS_TEC data).

  3. First Algerian seismic monitoring network, installed in 1985 (in process of ceasing activities due to equipment obsolescence). From 2006, a new digital network (ADSN: Algerian Digital Seismic Network) was installed.

References

  • Abacha I (2015) Étude de la sismicité de la région nord-est de l’Algérie. Thèse de Doctorat en Sismologie, Université Ferhat Abbas, Setif, Algérie

  • Adhikari B, Dahal S, Karki M, Mishra RK, Dahal RK, Sasmal S, Klausner V (2020) Application of wavelet for seismic wave analysis in Kathmandu Valley after the 2015 Gorkha earthquake, Nepal. Geoenviron Disasters 7:2. https://doi.org/10.1186/s40677-019-0134-8

    Article  Google Scholar 

  • Ali A, Ghazali R, Deris MM (2011) The wavelet multilayer perceptron for the prediction of earthquake time series data. Proceedings of the 13th International Conference on Information Integration and Web-Based Applications and Services- iiWAS’11. doi:https://doi.org/10.1145/2095536.2095561

  • Ayadi A, Bezzeghoud M (2015) Seismicity of Algeria from 1365 to 2013: Maximum Observed Intensity Map (MOI2014). Seismol Res Lett 86(1):236–244. https://doi.org/10.1785/0220140075

    Article  Google Scholar 

  • Belabbès S, Meghraoui M, Çakir Z, Bouhadad Y (2009) InSAR analysis of a blind thrust rupture and related active folding: the 1999 Ain Temouchent earthquake (Mw 57 Algeria) case study. J Seismol 13(4):421–432. https://doi.org/10.1007/s10950-008-9135-x

  • Bellalem F (2007) Aléa sismique en un site, méthodogie et application. Mémoire de Magister en Géophysique, Université de M’Hamed Bougara, Boumerdes, Algérie

  • Bendaoud A, Hamimi Z, Hamoudi M, Djemai S, Zoheir B (Eds.) (2019) The geology of the Arab world—an overview. Springer Geology. ISBN 978–3–319–96794–3. https://doi.org/10.1007/978-3-319-96794-3

  • Böhm J, Schuh H (Eds.) (2013) Atmospheric effects in space geodesy. Springer. ISBN 978–3–642–36932–2

  • Bolton DC, Shreedharan S, Rivière J, Marone C (2020) Acoustic energy release during the laboratory seismic cycle: insights on laboratory earthquake precursors and prediction. J Geophys Res Solid Earth, 125(8). https://doi.org/10.1029/2019JB018975

  • Conti L, Picozza P, Sotgiu A (2021) A critical review of ground based observations of earthquake precursors. Front Earth Sci 9:676766. https://doi.org/10.3389/feart.2021.676766

    Article  Google Scholar 

  • Denisenko VV (2015) Estimate for the strength of the electric field penetrating from the Earth’s surface to the ionosphere. Russ J Phys Chem B 9(5):789–795. https://doi.org/10.1134/s199079311505019x

    Article  Google Scholar 

  • Durmaz M (2013) Non-parametric and semi-parametric regional modeling of the ionospheric vertical total electron content using ground-based GPS observations. PhD Dissertation. Middle East Technical University

  • Enescu B, Ito K, Struzik ZR (2006) Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquakes. Geophys J Int Geophys J Int 164(1):63–74. https://doi.org/10.1111/j.1365-246x.2005.02810.x

    Article  Google Scholar 

  • Freund F (2011) Pre-earthquake signals: underlying physical processes. J Asian Earth Sci 41(4–5):383–400. https://doi.org/10.1016/j.jseaes.2010.03.009

    Article  Google Scholar 

  • Friedmann H (2012) Radon in earthquake prediction research. Radiat Prot Dosimetry 149(2):177–184. https://doi.org/10.1093/rpd/ncr229

    Article  Google Scholar 

  • Harrison RG, Aplin KL, Rycroft MJ (2010) Atmospheric electricity coupling between earthquake regions and the ionosphere. J Atmos Solar Terr Phys 72(5–6):376–381. https://doi.org/10.1016/j.jastp.2009.12.004

    Article  Google Scholar 

  • Jin S, Jin R, Liu X (2019) GNSS Atmospheric seismology — theory, observations and modeling. Springer Nature Singapore Pte Ltd. ISBN 978–981–10–3176–2

  • Kapiris P, Nomicos K, Antonopoulos G, Polygiannakis J, Karamanos K, Kopanas J, Zissos A, Peratzakis A, Eftaxias K (2005) Distinguished seismological and electromagnetic features of the impending global failure: Did the 7/9/1999 M5.9 Athens earthquake come with a warning? Earth Planet Sp 57:215–230. https://doi.org/10.1186/BF03351818

    Article  Google Scholar 

  • Kopylova GN, Boldina SV, Smirnov AA, Chubarova EG (2017) Experience in registration of variations caused by strong earthquakes in the level and physicochemical parameters of ground waters in the piezometric wells: the case of Kamchatka. Seism Instrum 53(4):286–295. https://doi.org/10.3103/s0747923917040065

    Article  Google Scholar 

  • Kuo C-L, Ho Y-Y, Lee L-C (2018) Electrical coupling between the ionosphere and surface charges in the earthquake fault zone. Geophys Monogr Ser 99–124. https://doi.org/10.1002/9781119156949.ch7

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying. 4th edn. Wiley, Hoboken, New Jersey, ISBN 978-1-118-67557-1

  • Liperovsky VA, Meister C-V, Liperovskaya EV, Bogdanov VV (2008) On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Nat Hazards Earth Syst Sci 8:1199–1205. https://doi.org/10.5194/nhess-8-1199-2008

    Article  Google Scholar 

  • Liu JY, Tsai YB, Chen SW, Lee CP, Chen YC, Yen HY, Chang WY, Liu C (2006) Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys Res Lett 33(2):L02103. https://doi.org/10.1029/2005gl023963

    Article  Google Scholar 

  • Marchetti D, Santis AD, Shen X, Campuzano SA, Perrone L, Piscini A, Giovambattista RD, Jin S, Ippolito A, Cianchini G, Cesaroni C, Sabbagh D, Spogli L, Zhima Z, Huang J (2019) Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2019.104097

  • Montilla JAP, Hamdache M, Casado CL (2003) Seismic hazard in Northern Algeria using spatially smoothed seismicity. Results for peak ground acceleration. Tectonophysics 372:105–119. https://doi.org/10.1016/S0040-1951(03)00234-8

    Article  Google Scholar 

  • Nadji A (2010) Etude sismotectonique du littoral oranais — Contribution à l’aléa sismique. Thèse de Doctorat, Université d’Oran, Algérie

  • Namgaladze AA, Zolotov OV, Zakharenkova IE, Shagimuratov II, Martynenko OV (2009) Ionospheric total electron content variations observed before earthquakes: Possible physical mechanism and modeling. Proc of MSTU 12(2):308–315

    Google Scholar 

  • Occhipinti G, Rolland L, Lognonné P, Watada S (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. J Geophys Res Space Physics 118(6):3626–3636. https://doi.org/10.1002/jgra.50322

    Article  Google Scholar 

  • Omori Y, Nagahama H, Kawada Y, Yasuoka Y, Ishikawa T, Tokonami S, Shinogi M (2009) Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation. Phys Chem Earth Parts A/B/C, 34(6–7):435–440. https://doi.org/10.1016/j.pce.2008.08.001

  • Pierce ET (1976) Atmospheric electricity and earthquake prediction. Geophys Res Lett 3(3):185–188. https://doi.org/10.1029/gl003i003p00185

    Article  Google Scholar 

  • Pulinets S, Ouzounov D (2011) Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model — an unified concept for earthquake precursors validation. J Asian Earth Sci 41(4–5):371–382. https://doi.org/10.1016/j.jseaes.2010.03.005

    Article  Google Scholar 

  • Sammuneh MA (2003) Contribution au positionnement en temps réel par GPS, prédiction de la correction ionosphérique. Thèse de Doctorat, Observatoire de Paris, France

  • Schaer S, Gurtner W, Feltens J (1998) Ionex: The ionosphere map exchange format version 1. Proc. IGS AC Work pp. 233–247.

  • Schlesinger A, Kukovica J, Rosenberger A, Heesemann M, Pirenne B, Robinson J, Morley M (2021) An Earthquake Early Warning System for southwestern British Columbia. Front Earth Sci. https://doi.org/10.3389/feart.2021.684084

  • Seeber G (2003) Satellite Geodesy, 2 compl. rev. exten., Walter de Gruyter, Berlin, New York. ISBN 978–3–11–020008–9. https://doi.org/10.1515/9783110200089

  • Silva HG, Oliveira MM, Serrano C, Bezzeghoud M, Reis AH, Rosa RN, Biagi PF (2012) Influence of seismic activity on the atmospheric electric field in Lisbon (Portugal) from 1955 to 1991. Annals of Geophysics, 55, 1. Special Issue: Earthquake Precursors, 2012. https://doi.org/10.4401/ag-5361

  • Sonakia A, Sondhiya DK, Kasde SK, Jalori H, Gwal AK (2014) Detection of seismo-ionospheric anomalies using wavelet based techniques. IOSR J Appl Phys 6(3):74–91. https://doi.org/10.9790/4861-06317491

    Article  Google Scholar 

  • Tachema A, Nadji A (2019) Geodetic contribution to predict the seismological activity of the Italian metropolis by the ionospheric variant of GPS_TEC. J Atmos Solar-Terr Phys. https://doi.org/10.1016/j.jastp.2018.12.006

  • Tachema A, Nadji A (2020) Contribution of ionospheric TEC anomalies to detecting the seismic precursors related to the 2008 Oran-Algeria event. Advances in Space Research. https://doi.org/10.1016/j.asr.2020.03.007

  • Tachema A (2012) Modélisation en 3D de la couche ionosphérique par des données GPS: utilisation d’estimateurs des moindres carrés et du filtre de Kalman. Mémoire de Magister en Géodésie, Centre des Techniques Spatiales, Oran, Algérie

  • Todorova S, Hobiger T, Weber R, Schuh H (2005) Using GPS for determination of the ionosphere. Proceedings of the International Scientific Conference SGEM 2005, June 13–17, Albena, Bulgaria

  • van Dinther Y, Künsch HR, Fichtner A (2019) Ensemble data assimilation for earthquake sequences: probabilistic estimation and forecasting of fault stresses. Geophys J Int 217:1453–1478. https://doi.org/10.1093/gji/ggz063

    Article  Google Scholar 

  • Xiang Y, Gao Y (2019) An enhanced mapping function with ionospheric varying height. Remote Sens 11(12):1497. https://doi.org/10.3390/rs11121497

    Article  Google Scholar 

  • Yadav KS, Karia SP, Pathak KN (2016) Removal of solar radiation effect based on nonlinear data processing technique for seismo-ionospheric anomaly before few earthquakes. Geomat Nat Haz Risk 7(3):1147–1161. https://doi.org/10.1080/19475705.2015.1021864

    Article  Google Scholar 

  • Yelles-Chaouche AK, Djellit H, Beldjoudi H, Bezzeghoud M, Buforn E (2004) The ain temouchent (Algeria) earthquake of December 22nd, 1999. Pure Appl Geophys 161(3):607–621. https://doi.org/10.1007/s00024-003-2465-2

  • Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. CR Geosci 338(1–2):126–139. https://doi.org/10.1016/j.crte.2005.11.002

    Article  Google Scholar 

  • Zhou C, Liu Y, Zhao S, Liu J, Zhang X, Huang J, Shen X, Ni B, Zhao Z (2017) An electric field penetration model for seismo-ionospheric research. Adv Space Res 60(10):2217–2232. https://doi.org/10.1016/j.asr.2017.08.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research. Material preparation and data collections were made by Dr. Abdennasser Tachema and Prof. Abdelmansour Nadji. Data analysis and results were performed by Dr. Abdennasser Tachema, Prof. Abdelmansour Nadji, and Prof. Mourad Bezzeghoud. The first draft of the manuscript was written by Dr. Abdennasser Tachema, and both co-authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdennasser Tachema.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Longjun Dong

Appendix

Appendix

Location of the ground-based IGS and ERGNSS receivers in the Western Mediterranean Basin

Table 3 and Fig. 8.

Table 3 Geographical location of the permanent GPS_IGS and GPS_ERGNSS ground receivers used to model the pre-earthquake ionospheric VTEC anomalies
Fig. 8
figure 8

Location of the used geodetic sites, belonging to the IGS and the Spanish GNSS Reference Stations (ERGNSS) Networks. IGS stations: shown in green triangles, ERGNSS stations: shown in blue triangles. The red star indicates the Ain Témouchent main earthquake epicenter (December 22, 1999; Mw = 5.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachema, A., Nadji, A. & Bezzeghoud, M. Geodetic analysis for investigating possible seismo-ionospheric precursors related to the Ain Témouchent earthquake of December 22, 1999, in NW Algeria. Arab J Geosci 15, 1270 (2022). https://doi.org/10.1007/s12517-022-10533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10533-4

Keywords

Navigation