Skip to main content

Advertisement

Log in

Ichnology of the Cenomanian–Turonian boundary event in the southern Tethyan margin (Khanguet Grouz section, Ouled Nail Range, Algeria)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Cenomanian–Turonian boundary event (C/TBE) is studied in the southern Tethyan margin from an ichnological point of view for the first time. The ichnotaxa Chondrites isp., Pilichnus isp., Planolites isp., Ptychoplasma isp., ?Thalassinoides isp. and ?Trichichnus isp. are reported from the Cenomanian–Turonian succession of the Khanguet Grouz section (Ouled Nail Range, Algerian Saharan Atlas), subdivided into five informal units. The pre-event deposits are characterised by high abundance of burrows attributed to Planolites and Ptychoplasma, associated with bivalve and gastropod shells, which indicate that the ecological niche was occupied by different organisms with variable ethology. The beginning of the C/TBE is marked by an important change bioturbation intensity as well as ichnodiversity as revealed by the decrease of trace fossils, by either their generalised scarcity or their total absence. The recorded traces from the C/TBE deposits are Chondrites, Pilichnus, Planolites, ?Thalassinoides and ?Trichichnus, indicating stressful conditions, which is supported also by the joint presence of dwarfed forms of bivalves. The C/TBE black shales are laminated and largely unburrowed to sparsely burrowed, suggesting episodes of improved palaeoenvironmental conditions during which Chondrites, Pilichnus and ?Trichichnus producers could colonise the substrate in unfavourable, dysoxic to anoxic benthic conditions. However, these black shales are intercalated by different facies characterising oxic conditions, as indicated by the presence of fauna (i.e. inoceramid bivalves). The post-event (or recovery) phase is characterised by high bioturbation intensity, with abundant Planolites and other undetermined burrows. As evidenced in the northern Tethyan margin, the important decrease in ichnoabundance and ichnodiversity is related to a significant decrease in the oxygenation of pore water. Moreover, the ‘Oceanic Anoxic Event’ (‘OAE-2’)-ichnoassemblage of the Khanguet Grouz section is similar to those found in the Rio Fardes section (Betic Cordillera, Spain), in comparison with the other Tethyan sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amédro F, Accarie H, Robaszynski F (2005) Position de la limite Cénomanien-Turonien dans la Formation Bahloul de Tunisia centrale: apports intégrés des ammonites et des isotopes du carbone (δ13C). Eclogae Geol Helv 98:151–167

    Article  Google Scholar 

  • Arthur MA, Dean WE, Pratt LM (1988) Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian-Turonian boundary. Nature 335:714–717

    Article  Google Scholar 

  • Bachan A, Lau KV, Saltzman MR, Thomas E, Kump LR, Payne JL (2017) A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic. Am J Sci 317(6):641–676

    Article  Google Scholar 

  • Bąk K, Uchman A, Bąk M (2000) Agglutinated foraminifera, radiolaria and trace fossils from Upper Cretaceous deep-water variegated shales at Trawne Stream, Grajcarek Unit, Pieniny Klippen Belt, Carpathians, Poland. Bull Polish Acad Sci, Earth Sci 48:1–32

    Google Scholar 

  • Bassoullet JP (1973) Contribution à l’étude stratigraphique du Mésozoïque de l’Atlas Saharien occidental (Algérie). Thèse de Doctorat Ès-Sciences, Université de Paris VI, pp 497

  • Bayet-Goll A, de Carvalho CN, Moussavi-Harami R, Mahboubi A, Nasiri Y (2014) Depositional environments and ichnology of the deep-marine succession of the Amiran Formation (upper Maastrichtian–Paleocene), Lurestan Province, Zagros Fold-Thrust Belt, Iran. Palaeogeogr, Palaeoclimatol, Palaeoecol 401:13–42

    Article  Google Scholar 

  • Bayet-Goll A, Samani PN, de Carvalho CN, Monaco P, Khodaie N, Pour MM, Kazemeini H, Zareiyan MH (2017) Sequence stratigraphy and ichnology of Early Cretaceous reservoirs, Gadvan Formation in southwestern Iran. Mar Pet Geol 81:294–319

    Article  Google Scholar 

  • Bayet-Goll A, de Carvalho CN, Daraei M, Monaco P, Sharafi M (2018) Sequence stratigraphic and sedimentologic significance of the trace fossil Rhizocorallium in the Upper Triassic Nayband Formation, Tabas Block, Central Iran. Palaeogeogr Palaeoclimatol Palaeoecol 491:196–217

    Article  Google Scholar 

  • Bayet-Goll A, Daraei M, Taher SPM, Etemad-Saeed N, de Carvalho CN, Zandkarimi K, Monaco P, Zohdi A, Rabbani J, Nasiri Y (2020) Variations of the trace fossil Zoophycos with respect to paleoenvironment and sequence stratigraphy in the Mississippian Mobarak Formation, northern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 551:109754

    Article  Google Scholar 

  • Bayet-Goll A, Daraei M, Geyer G, Bahrami N, Bagheri F (2021) Environmental constraints on the distribution of matground and mixground ecosystems across the Cambrian Series 2–Miaolingian boundary interval in Iran: a case study for central sector of northern Gondwana. J Afr Earth Sc 176:104120

    Article  Google Scholar 

  • Baucon A, Bednarz M, Dufour S, Felletti F, Malgesini G, de Carvalho CN, Niklas KJ, Wehrmann A, Batstone R, Bernardini F, Briguglio A, Cabella R, Cavalazzi B, Ferretti A, Zanzerl H, McIlroy D (2020) Ethology of the trace fossil Chondrites: form, function and environment. Earth Sci Rev 202:102989

    Article  Google Scholar 

  • Belaid M, Cherif A, Vinn O, Naimi MN (2020) First record of trace fossils from the Oxfordian Argiles rouges de Kheneg Formation (Tiaret, northwestern Algeria). Geologica Croatica 73:85–94

    Article  Google Scholar 

  • Benadla M, Reolid M, Marok A, El Kamali N (2018) The Cenomanian-Turonian transition in the carbonate platform facies of the Western Saharan Atlas (Rhoundjaïa Formation, Algeria). J Iber Geol 44:405–429

    Article  Google Scholar 

  • Benhamou M, Brahim M (2020) Gisement d’ichtyofaunes et faciès associés au passage Cénomanien-Turonien dans la région de l’Ouarsenis (Algérie du Nord): coupes de reference, correlation régionale et approche paléobiogéographique. Mémoire Du Service Géologique De L’algérie 21:103–126

    Google Scholar 

  • Benyoucef M, Mebarki K, Ferré B, Adaci M, Bulot LG, Desmares D, Villier L, Bensalah M, Frau C, Ifrim C, Malti FZ (2017) Litho- and biostratigraphy, facies patterns and depositional sequences of the Cenomanian-Turonian deposits in the Ksour Mountains (Saharan Atlas, Algeria). Cretac Res 78:34–55

    Article  Google Scholar 

  • Bertotti G, de Graaf S, Bisdom K, Oskam B, Vonhof HB, Bezerra FHR, Reijmer JJG, Cazarin CL (2017) Fracturing and fluid-flow during post-rift subsidence in carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil. Basin Res 29:836–853

    Article  Google Scholar 

  • Bhosle B, Johnson C, Vaghela S, Schultz DJ, Dholakia V (2019) First report: trace fossil assemblage Ptychoplasma (P. excelsum, P. vagans), Dendroidichnites (D. irregulare), Ctenopholeus (?C. kutcheri) and Bergaueria (B. hemispherica) in the cretaceous rocks of Bagh Formation, Mainland Gujarat, India. Ichnos 26:256–265

    Article  Google Scholar 

  • Bromley RG (1996) Trace fossils, Biology, Taphonomy and Applications, 2nd edn. Chapman and Hall, London, p 361

    Google Scholar 

  • Bromley RG, Ekdale AA (1984) Chondrites: a trace fossil indicator of anoxia in sediments. Science 224:872–874

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time, Cambridge University Press, p 358

  • Buatois LA, Mángano MG (2016) Recurrent patterns and processes: the significance of ichnology in evolutionary paleoecology. In: Mángano MG, Buatois LA (Eds.), The trace-fossil record of major evolutionary events. vol 2: Mesozoic and Cenozoic. Springer, pp 449–473

  • Buatois LA, Mángano MG, Aceñolaza F (2002) Trazas Fósiles. Señales de comportamiento en el Registro Estratigráfico. Museo Paleontológico Egidio Feruglio, Chubut, p 382

    Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer-Verlag, Berlin Heidelberg, p 623

    Book  Google Scholar 

  • Cherif A, Naimi MN (2022) A diverse ichnofauna and its palaeoenvironmental significance from the Upper Jurassic Argiles de Saïda Formation (Northwestern Algeria). Hist Biol 34:624–647

    Article  Google Scholar 

  • Cherif A, Bert D, Benhamou M, Benyoucef M (2015) La Formation des Argiles de Saïda (Jurassique supérieur) dans le domaine tlemcenien oriental (Takhemaret, Algérie): données biostratigraphiques, ichnologiques et sédimentologiques. Rev Paléobiol 34:363–384

    Google Scholar 

  • Cherif A, Benyoucef M, Naimi MN, Ferré B, Zeghari A, Frau C, Berrabah A (2021a) Trace fossils from the Berriasian-Valanginian of the Ouarsenis Range (northwestern Algeria) and their paleoenvironmental implications. J Afr Earth Sc 180:104219

    Article  Google Scholar 

  • Cherif A, Naimi MN, Belaid M (2021b) Deep-sea trace fossils and depositional model from the lower Miocene Tiaret Marl Formation (northwestern Algeria). J Afr Earth Sc 175:104115

    Article  Google Scholar 

  • Chikhi-Aouimeur F, Grosheny D, Ferry S, Herkat M, Jati M, Atrops F, Redjimi-Bourouiba W, Benkherouf-Kechid F (2011) Lithofaciès, paléogéographie et correlations au passage Cénomanien-Turonien dans l’Atlas Saharien (Ouled Naïl, Zibans, Aurès et Hodna, Algérie). Mémoires Du Service Géologique National 17:67–83

    Google Scholar 

  • Djebbar T (2000) Structural evolution of the Algerian Saharan Atlas PhD thesis. Royal Holloway University of London, United Kingdom, p 373

    Google Scholar 

  • Doglioni C, D’Agostino N, Mariotti G (1998) Normal faulting vs regional subsidence and sedimentation rate. Mar Pet Geol 15:737–750

    Article  Google Scholar 

  • Ekdale AA (1992) Muckraking and mudslinging: the joys of deposit-feeding. In: Maples CG, West RR (Eds.), Trace fossils: paleontological society, short courses in paleontology 5, 145–171

  • Ekdale AA, Bromley RG (2003) Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden. Palaeogeogr Palaeoclimatol Palaeoecol 192:221–227

    Article  Google Scholar 

  • Emberger J (1960) Esquisse géologique de la partie orientale des Monts des Ouled Naïl (Atlas saharien, Algérie). Publications Du Service De La Carte Géologique De L’algérie 27:1–398

    Google Scholar 

  • Fillion D, Pickerill RK (1990) Ichnology of the Upper Cambrian? To Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. Palaeontogr Can 7:1–119

    Google Scholar 

  • Frey RW (1970) Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ Kansas Paleonto Contrib 53:1–41

    Google Scholar 

  • Frey RW, Curran AH, Pemberton GS (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:511–528

    Google Scholar 

  • Fu S (1991) Funktion, Verhalten und Einteilung fucoider und lophoctenoider Lebensspuren. Cour Forschungsinst Senck 135:1–79

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Grosheny D, Chikhi-Aouimeur F, Ferry S, Benkherouf-Kechid F, Jati M, Atrops F, Redjimi-Bourouiba W (2008) The Upper Cenomanian-Turonian (Upper Cretaceous) of the Saharan Atlas (Algeria). Bull De La Société Géologique De France 179:593–603

    Article  Google Scholar 

  • Grosheny D, Ferry S, Jati M, Ouaja M, Bensalah M, Atrops F, Chikhi-Aouimeur F, Benkherouf-Kechid F, Negra H, Aït Salem H (2013) The Cenomanian-Turonian boundary on the Saharan Platform (Tunisia and Algeria). Cretac Res 42:66–84

    Article  Google Scholar 

  • Guiraud R (1973) Evolution post-triasique de l’avant-pays de la chaîne en Algérie d’après l’étude du Bassin du Hodna et des regions voisines. Thèse de Doctorat Ès-Sciences, Université de Nice, France, p 270

    Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1166

    Article  Google Scholar 

  • Hart MB (1980) A water depth model for the evolution of the planktonic Foraminiferida. Nature 286:252–254

    Article  Google Scholar 

  • Hassani M, Chabou MC, Haddoum H, Hamoudi M (2016) Tectonic control on the morphology of the subcircular structure of El Medaouar (Saharan Atlas, Algeria): insights from geological and remote sensing data. Arab J Geosci 9:632

    Article  Google Scholar 

  • Herkat M (1999) La sedimentation de haut niveau marin du Crétacé supérieur de l’Atlas saharien oriental et des Aurès. Stratigraphie séquentielle, analyse quantitative des biocénoses, évolution paléogéographique et contexte géodynamique. Thèse de Doctorat Ès-Sciences, USTHB, Algiers, Algeria, p 802

    Google Scholar 

  • Kazi-Tani N (1986) Evolution géodynamique de la bordure nord-africaine: le domaine intraplaque nord-algérien. Approche mégaséquentielle. Thèse de Doctorat Ès-Sciences, Université de Pau et des Pays de l’Adour, France, p 871

    Google Scholar 

  • Kędzierski M, Uchman A, Sawlowicz Z, Briguglui A (2014) Fossilized bioelectric wire – the trace fossil Trichichnus. Biogeosci Discuss 11:17707–17728

    Google Scholar 

  • Kennedy WJ, Walaszczyk I, Cobban WA (2000) Pueblo, Colorado, USA, candidate Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Cretaceous, and for the base of the Middle Turonian Substage, with a revision of the Inoceramidae (Bivalvia). Acta Geol Pol 50:295–334

    Google Scholar 

  • Kennedy WJ, Walaszczyk I, Cobban WA (2005) The Global Boundary Stratotype Section and Point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, U.S.A. Episodes 28:93–104

    Article  Google Scholar 

  • Kim JY, Kim KS, Pickerill RK (2002) Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae area, Kyongsangnamdo, Southeast Korea. Ichnos 9:41–60

    Article  Google Scholar 

  • Knaust D (2012a) Trace-fossil systematics. In: Knaust D, Bromley RG (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64, Elsevier, pp 79–101

  • Knaust D (2012b) Methodology and techniques. In: Knaust D, Bromley RG (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64, Elsevier, pp 245–271

  • Knaust D (2017) Atlas of trace fossils in well core: appearance, taxonomy and interpretation. Springer, p 209

  • Kotake N (1991) Packing process for the filling material in Chondrites. Ichnos 1:277–285

    Article  Google Scholar 

  • Łaska W, Rodríguez-Tovar FJ, Uchman A (2017) Evaluating macrobenthic response to the Cretaceous-Paleogene event: a high-resolution ichnological approach at the Agost section (SE Spain). Cretac Res 70:96–110

    Article  Google Scholar 

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17:1–29

    Article  Google Scholar 

  • Mángano MG, Buatois LA (2016) The Cambrian explosion. In: Mángano MG, Buatois LA (Eds.) The trace-fossil record of major evolutionary events. Vol 1: Precambrian and Paleozoic. Springer, pp 73–126

  • Martin M, Pollard J (1996) The role of trace fossil (ichnofabric) analysis in the development of depositional models for the Upper Jurassic Fulmar Formation of the Kittiwake Field (Quadrant 21 UKCS). In: Hurst A et al. (Eds.), Geology of the Humber Group: Central Graben and Moray Firth. Geological Society Special Publications, UKCS, 114: pp 163–183

  • Martín-Martín JD, Gomez-Rivas E, Gomez-Gras D, Travé A, Ameneiro R, Koehn D, Bons D (2018) Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geolo Soc, London, Spec Publ 459:157–176

    Article  Google Scholar 

  • Martinsson A (1970) Toponomy of trace fossils. In: Crimes TP, Harper JC (Eds.), Trace fossils. Geological Journal, Special issue 3: pp 323–330

  • McBride EF, Picard DM (1991) Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), Northern Apennines, Italy. Palaios 6:281–290

    Article  Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ, Duarte LV (2017) Selective incidence of the Toarcian Oceanic Anoxic Event (T-OAE) on macroinvertebrate marine communities: a case from the Lusitanian basin (Portugal). Lethaia 50:548–560

    Article  Google Scholar 

  • Mikuláš R (1997) Ethological interpretation of the ichnogenus Pragichnus Chulpáč, 1987 (Ordovician, Czech Republic). N Jb Geol Paläont 1997:93–108

    Google Scholar 

  • Mikuláš R (2000) Trace fossils from the Cambrian of the Barrandianarea. Czech Geol Surv Spec Paper 12:1–29

    Google Scholar 

  • Mikuláš R, Fatka O, Szabad M (2012) Paleoecologic implications of ichnofossils associated with slightly skeletonized body fossils, Middle Cambrian of the Barrandian Area, Czech Republic. Ichnos 19:199–210

    Article  Google Scholar 

  • Monaco P, Rodríguez-Tovar FJ, Uchman A (2012) Ichnological analysis of lateral environmental heterogeneity within the Bonarelli Level (uppermost Cenomanian) in the classical localities near Gubbio, Central Apennines, Italy. Palaios 27:48–54

    Article  Google Scholar 

  • Monaco P, Rodríguez-Tovar FJ, Uchman A (2016) Environmental fluctuations during the latest Cenomanian (Bonarelli Level) in the Gubbio area (central Italy) based on an ichnofabric approach. In: Menichetti M, Coccioni R, Montanari A (Eds.), The stratigraphic record of Gubbio: integrated stratigraphy of the Late Cretaceous–Paleogene Umbria-Marche Pelagic Basin, vol 524. Geological Society of America Special Paper, pp 97–103

  • Moreau P (1991) Morphologie du Jurassique et du Crétacé supérieurs en pays cognaçais (Charente). Justification Géologique. Norois 38:427–437

    Article  Google Scholar 

  • Myrow PM (1995) Thalassinoides and the enigma of early Paleozoic open-framework burrow systems. Palaios 10:58–74

    Article  Google Scholar 

  • Naimi MN, Cherif A (2021) Sedimentology and ichnology of the mid-Cretaceous succession of Ouled Nail Mounts (Eastern Saharan Atlas, Algeria). Geologia Croatica 74(3):209–223

    Article  Google Scholar 

  • Naimi MN, Mansour B, Cherif A, Chekkali MC, Benkhedda A, Belaid M (2020) Lithostratigraphie et paléoenvironnements des dépôts messiniens de la terminaison nord-orientale des monts des Ouled Ali (bassin du Bas Chélif, Algérie nord-occidentale). Rev Paléobiol 39:467–483

    Google Scholar 

  • Naimi MN, Mahboubi CY, Cherif A (2021a) Lithostratigraphy and evolution of the Lower Cretaceous Basins, in Western Saharan Atlas, Algeria: a comment. J Afr Earth Sc 183:104304

    Article  Google Scholar 

  • Naimi MN, Vinn O, Cherif A, Benyoucef M (2021b) Trypanites and associated bivalve borings in an Upper Albian hardground from the Eastern Saharan Atlas (Algeria). Proc Geol Assoc 132(5):529–536

    Article  Google Scholar 

  • Nasiri Y, Bayet-Goll A, Mahboubi A, Moussavi-Harami R, Monaco P (2020) Paleoenvironmental control on trace fossils across a Mississippian carbonate ramp succession, Mobarak Formation, east of Central and Eastern Alborz, Iran. J Afr Earth Sci 165:103800

    Article  Google Scholar 

  • Olivero D, Gaillard C (1996) Ichnologie du passage Cénomanien-Turonien. Exemple de la coupe de Vergons (Alpes de Haute-Provence, SE France). Comptes Rendus De L’académie Des Sciences, Paris 322:1005–1012

    Google Scholar 

  • Pieńkowski G, Uchman A (2009) Ptychoplasma conica isp. nov. – a new bivalve locomotion trace fossil from the Lower Jurassic (Hettangian) alluvial sediments of Sołtyków, Holy Cross Mountains, Poland. Geol Q 53:397–406

    Google Scholar 

  • Rindsberg AK (1994) Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous formations. Geol Surv Alabama Bull 158:1–107

    Google Scholar 

  • Ritter E (1902) Le Djebel Amour et les Monts des Oulad-Nayl. Bulletin Du Service De La Carte Géologique De L’algérie 2:1–97

    Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A (2017) The Faraoni event (latest Hauterivian) in ichnological record: The Rio Argos section of southern Spain. Cretac Res 79:109–121

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Martín-Algarra A, O’Dogherty L (2009a) Nutrient spatial variation during intrabasinal upwelling at the Cenomanian-Turonian oceanic anoxic event in the westernmost Tethys: an ichnological and facies approach. Sed Geol 215:83–93

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Martín-Algarra A (2009b) Oceanic anoxic event at the Cenomanian-Turonian boundary interval (OAE-2): ichnological approach from the Betic Cordillera, southern Spain. Lethaia 42:407–417

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Alegret L, Molina E (2011) Impact of the Paleocene-Eocene Thermal Maximum on the macrobenthic community: ichnological record from the Zumaia section, northern Spain. Mar Geol 282:178–187

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Reolid M, Sánchez-Quiñónez CA (2020) Ichnological analysis of the Cenomanian-Turonian boundary interval in a collapsing slope setting: a case from the Rio Fardes section, southern Spain. Cretac Res 106:104262

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Dorador J, Zuchuat V, Planke S, Hammer Ø (2021) Response of macrobenthic trace maker community to the end-Permian mass extinction in Central Spitsbergen, Svalbard. Palaeogeogr, Palaeoclimatol, Palaeoecol. https://doi.org/10.1016/j.palaeo.2021.110637

    Article  Google Scholar 

  • Ruault-Djerrab M, Kechid-Benkherouf F (2011) Micropaleontological study (foraminifera, ostracods) and characterization of the paleoenvironment of middle Cretaceous deposits (Djebel Chemla area, north-eastern Algeria). Arab J Geosci 4:1289–1299

    Article  Google Scholar 

  • Ruault-Djerrab M, Ferré B, Kechid-Benkherouf F (2012) Etude micropaléontologique du Cénomano-Turonien dans la région de Tébessa (NE Algérie): implications paléoenvironnementales et recherche de l’empreinte de l’OAE2. Rev Paléobiol 31:127–144

    Google Scholar 

  • Ruault-Djerrab M, Kechid-Benkherouf F, Djerrab A (2014) Données paléoenvironnementales sur le Vraconnien/Cénomanien de la région de Tébessa (Atlas saharien, nord-est Algérie). Caractérisation de l’OAE2. Annales De Paléontologie 100:343–359

    Article  Google Scholar 

  • Salhi A, Atrops F, Benhamou M (2020) Le passage cénomanien-turonien dans les Monts des Ksour (Atlas Saharien Occidental, Algérie): biostratigraphie, géochimie et milieux de depot. Estud Geol 76:e135

    Article  Google Scholar 

  • Salmi-Laouar S, Ferré B, Chaabane K, Laouar R, Boyce AJ, Fallick AE (2018) The oceanic anoxic event 2 at Es Souabaa (Tebessa, NE Algeria): bio-events and stable isotope study. Arab J Geosci 11:182

    Article  Google Scholar 

  • Savrda CE, Bottjer DJ (1986) Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14:3–6

    Article  Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnbouw 55:179–184

    Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64:67–87

    Google Scholar 

  • Scotese CR (2014) Atlas of Late Cretaceous Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 16 – 22, Mollweide projection, PALEOMAP project, Evanston, IL

  • Seilacher A (1978) Use of trace fossil assemblages for recognizing depositional environments. In: Basan PB (Ed.), Trace fossil concepts. Society of Economic Paleontologists and Mineralogists Short Course Notes, 5, Tulsa (Oklahoma), pp 185–201

  • Seilacher A (1990) Aberration in bivalve evolution related to photo- and chemo-symbiosis. Hist Biol 3:289–311

    Article  Google Scholar 

  • Sharafi M, Rodríguez-Tovar FJ, Janočko J, Bayet-Goll A, Mohammadi M, Khanehbad M (2022) Environmental significance of trace fossil assemblages in a tide-wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran. Int J Earth Sci 111:103–126

    Article  Google Scholar 

  • Simpson S (1957) On the trace fossil Chondrites. Q J Geol Soc Lond 112:475–500

    Article  Google Scholar 

  • Stachacz M, Uchman A, Rodríguez-Tovar FJ (2017) Ichnological record of the Frasnian-Famennian boundary interval: two examples from the Holy Cross Mts (Central Poland). Int J Earth Sci 106:157–170

    Article  Google Scholar 

  • Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. Geol Soc, London, Spec Publ 150:141–148

    Article  Google Scholar 

  • Tchenar S, Ferré B, Adaci M, Zaoui D, Benyoucef M, Bensalah M, Kentri T (2020) Incidences de l’Evènement Anoxique Océnique II sur l’évolution des ostracodes des dépôts cénomano-turoniens du bassin de Tinrhert (SE Algérie). Carnets De Géologie 20:145–164

    Article  Google Scholar 

  • Tsikos H, Jenkyns HC, Walsworth-Bell B, Petrizzo MR, Forster A, Kolonic S, Erba E, Silva IP, Baas M, Wagner T, Sinninghe JS (2005) Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. J Geol Soc 161:711–719

    Article  Google Scholar 

  • Uchman A (1995) Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:3–115

    Google Scholar 

  • Uchman A (1999) Ichnology of the Rhenodanubian Flysch (Lower Cretaceous–Eocene) in Austria and Germany. Beringeria 25:65–171

    Google Scholar 

  • Uchman A, Mikuláš R, Houša V (2003) The trace fossil Chondrites in uppermost Jurassic–lower Cretaceous deep cavity fills from the western Carpathians (Czech Republic). Geol Carpath 54:181–187

    Google Scholar 

  • Uchman A, Bąk K, Rodríguez-Tovar FJ (2008) Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian–Turonian boundary): an example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeogr Palaeoclimatol Palaeoecol 262:61–71

    Article  Google Scholar 

  • Uchman A, Mikuláš R, Rindsberg AK (2011) Mollusc trace fossils Ptychoplasma Fenton and Fenton, 1937 and Oravaichnium Plička and Uhrová, 1990: their type material and ichnospecies. Geobios 44:387–397

    Article  Google Scholar 

  • Uchman A, Caruso C, Sonnino M (2012) Taxonomic review of Chondrites affinis (Sternberg, 1833) from Cretaceous-Neogene offshore–deep-sea Tethyan sediments and recommendation for its further use. Riv Ital Paleontol Stratigr 118:313–324

    Google Scholar 

  • Uchman A, Rodríguez-Tovar FJ, Oszczypko N (2013a) Exceptionally favourable life conditions for macrobenthos during the Late Cenomanian OAE-2 event: ichnological record from the Bonarelli Level in the Grajcarek Unit, Polish Carpathians. Cretac Res 46:1–10

    Article  Google Scholar 

  • Uchman A, Rodríguez-Tovar FJ, Machaniec E, Kędzierski M (2013b) Ichnological characteristics of Late Cretaceous hemipelagic and pelagic sediments in a submarine high around the OAE-2 event: a case from the Rybie section, Polish Carpathians. Palaeogeogr Palaeoclimatol Palaeoecol 370:222–231

    Article  Google Scholar 

  • Wendler I (2013) A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation. Earth Sci Rev 126:116–146

    Article  Google Scholar 

  • Werner F, Wetzel W (1982) Interpretation of biogenic structures in oceanic sediments. Bulletin De L’institut De Géologie Du Bassin D’aquitaine 31:275–288

    Google Scholar 

  • Wetzel A (1983) Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin (Philippines). Palaeogeogr Palaeoclimatol Palaeoecol 42:285–304

    Article  Google Scholar 

  • Wetzel A, Uchman A (2001) Sequential colonization of muddy turbidites in the Eocene Beloveža Formation, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 168:171–186

    Article  Google Scholar 

  • Wilmsen M, Berensmeier M, Fürsich FT, Schlagintweit F, Hairapetian V, Pashazadeh B, Majidifard MR (2020) Mid-Cretaceous biostratigraphy (ammonites, inoceramid bivalves and foraminifers) at the eastern margin of the Anarak Metamorphic Complex (Central Iran). Cretac Res 110:104411

    Article  Google Scholar 

  • Wonders AAH (1980) Middle and Late Cretaceous planktonic foraminifera of the western Mediterranean area. Utrecht Micropaleontol Bull 24:1–157

    Google Scholar 

  • Zhang LJ, Qi YA, Buatois LA, Mangano MG, Meng Y, Li D (2017) The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate setting. Sci Rep 7:45773

    Article  Google Scholar 

Download references

Acknowledgements

We thank also the journal reviewers Aram Bayet-Goll (Zanjan, Iran) and an anonymous reviewer, as well as the journal editor Abdullah M. Al-Amri and associated editor Aitor Payros for helpful comments and constructive criticism that greatly improved the manuscript. We gratefully thank Alfred Uchman (Jagiellonian, Poland) for fruitful discussions on the ichnotaxonomic affinities of the studied traces. Tuna Eren (Ankara, Turkey) is particularly thanked for the linguistic revision of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Nadir Naimi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Attila Ciner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naimi, M.N., Cherif, A., Mahboubi, C.Y. et al. Ichnology of the Cenomanian–Turonian boundary event in the southern Tethyan margin (Khanguet Grouz section, Ouled Nail Range, Algeria). Arab J Geosci 15, 1150 (2022). https://doi.org/10.1007/s12517-022-10420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10420-y

Keywords

Navigation