Skip to main content

Advertisement

Log in

Environmental significance of trace fossil assemblages in a tide‒wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study integrates ichnological and sedimentological data to interpret depositional environments of the carbonate sediments of the Tirgan Formation (Lower Cretaceous) in the eastern Kopet-Dagh Basin, north-east Iran. Lithofacies analysis shows that these sediments were deposited in inner ramp, middle ramp and offshore (outer ramp) environments. Five ichnoassemblages are identified in the sediments that consist of Thalassinoides, ThalassinoidesRhizocorallium, PlanolitesRhizocorallium, ArenicolitesDiplocraterion, and Arenicolites. Th, Th-Rh and Pl-Rh with low diversity and abundance of the trace fossils formed during waning phase of storms in a predominantly medium to high-energy hydrodynamic regime. High sedimentation rate and mobile substrate condition featuring a shallow-marine setting. ArDi ichnoassemblage, consisting of horizontal and vertical traces of deposit and suspension feeders, respectively, portray two different phases. A predominantly high energy phase with instable substrate is displayed by the vertical traces, while a minor omission phase, associated with a decrease in sedimentation rate or non-deposition, is indicated by the horizontal structures. Arenicolites ichnoassemblage with low bioturbation index and low ichnodiversity is related to a semi-sheltered area of lagoon environments with periodically marine water circulation. The study of the ichnological attributes in the studied successions indicates the presence of a shallowing up-ward trend in the storm‒tide-dominated ramp sequence. Ichnoassemblage development is largely controlled by depositional and ecological conditions, e.g., the stability of substrate, hydrodynamic regime (wave and tide), and food abundance, which altogether control the substrate colonization. Based on an integrated ichnological and sedimentological approach, we characterize the depositional environment, deciphering allogenic and autogenic environmental controls on the trace fossil distribution on a passive margin depositional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afshar-Harb A (1979) The stratigraphy, tectonics and petroleum geology of the Kopet-Dagh region, northern Iran. PhD Thesis, Imperial College of Sciences and Technology, University of London, p 316

  • Afshar-Harb A (1982) Geological Map of Sarakhs Area 1:250,000. National Iranian Oil Company (NIOC), Exploration and Production, Tehran, 1 Sheet

  • Afshar-Harb A (1994) Geology of the Kopet-Dagh Iran (in Persian). Geological Survey of Iran, Tehran, p 265

    Google Scholar 

  • Aguirre J, Gibert JM, Bernabeu AP (2010) Proximal-distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeogr Palaeoclimatol Palaeoecol 291:328–337

    Google Scholar 

  • Alavi M (1992) Thrust tectonics of the Binalood region, NE Iran. Tectonics 11:360–370

    Google Scholar 

  • Alavi M, Vaziri H, Seyed-Emami K, Lasemi Y (1997) The Triassic and associated rocks of the Aghdarband area in central and north eastern Iran as remnant of the southern Turanian active continental margin. Geol Soc Am Bull 109:1563–1575

    Google Scholar 

  • Bachmann M, Hirsch F (2006) Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretac Res 27:487–512

    Google Scholar 

  • Barrier E, Vrielynck B (2008) Map 6: Middle Aptian (121.0e115.0 Ma). In: Barrier E, Vrielynck B (eds) Palaeotectonic maps of the Middle East tectono-sedimentary epalins spastic maps from the Late Norian to Pliocene. Commission for the Geological Map of the World (CGMW/CCGM), Paris

  • Bassant P, Van Buchem FSP, Strasser A, Gorur N (2005) The stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. Sed Geol 173:187–232

    Google Scholar 

  • Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Palaeoecol 295:258–280

    Google Scholar 

  • Bauer J, Bremen JK, Bochum TS (2002) Platform environments, microfacies and systems tracts of the Upper Cenomanian-Lower Santonian of Sinai. Egypt Facies 47:1–26

    Google Scholar 

  • Bayet-Goll A, Geyer G, Wilmsen M, Mahboubi A, Moussavi-Harami R (2014) Facies architecture, depositional environments, and sequence stratigraphy of the Middle Cambrian Fasham and Deh-Sufiyan Formations in the central Alborz, Iran. Facies. https://doi.org/10.1007/s10347-014-0401-9

    Article  Google Scholar 

  • Bayet-Goll A, Neto de Carvalho C, Monaco P, Sharafi M (2016) Sequence stratigraphic and sedimentologic significance of biogenic structures from chalky limestones of the Turonian-Campanian Abderaz Formation, Kopet-Dagh, Iran. In: Khosla A, Lucas SG (eds) Recent advances in cretaceous biodiversity, palaeoenvironments and palaeobiogeographic implications, special Issue, New Mexico Museum of Natural History and Science Bulletin, vol 71, pp 19–43

  • Bayet-Goll A, Carvalho CN, Daraei M, Monaco P, Sharafi M (2018) Sequence stratigraphic and sedimentologic significance of the trace fossil Rhizocorallium in the Upper Triassic Nayband Formation, Tabas block, Central Iran. Palaeogeogr Palaeoclimatol Palaeoecol 491:196–217

    Google Scholar 

  • Bayet-Goll A, Daraei M, Parvin Mousavi Taher S, Etemad-Saeed N, Neto de Carvalho C, Zandkarimi K, Monaco P, Zohdi A, Rabbani J, Nasiri Y (2020) Variations of the trace fossil Zoophycos with respect to paleoenvironment and sequence stratigraphy in the Mississippian Mobarak Formation, northern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 551:109754

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeographic and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Google Scholar 

  • Bernaus GM, Arnaud-Vanneauc A, Caus E (2003) Carbonate platform sequence stratigraphy in a rapidly subsiding area: The Late Barremian-Early Aptian of the Organya basin, Spanish Pyrenees. Sed Geol 159:177–201

    Google Scholar 

  • Bertling M, Braddy SJ, Bromley RG, Demathieu GR, Genise J, Mikulas R, Nielsen JK, Nielsen KSS, Rindsberg AK, Schlirf M, Uchman A (2006) Names fortrace fossils: a uniform approach. Lethaia 39:265–286

    Google Scholar 

  • Bover-Arnal T, Salas R, Moreno-Bedmar JA, Bitzer K (2009) Sequence stratigraphy and architecture of a late Early-Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain). Sed Geol 219:280–301

    Google Scholar 

  • Bromley RG (1996) Trace fossils. Biology, taphonomy and applications, 2nd edn. Chapman and Hall, London

  • Bromley RG, Ekdale AA (1984) Trace fossil preservation in flint in the European chalk. J Paleontol 58:298–311

    Google Scholar 

  • Brunet MF, Korotaev MV, Ershov AV, Nikishin AM (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Sed Geol 156:119–148

    Google Scholar 

  • Buatois LA, Mángano MG, Alissa A, Carr TR (2002) Sequence stratigraphic and sedimentologic significance of biogenic structures from a Late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sed Geol 152:99–132

    Google Scholar 

  • Carević I, Taherpour Khalil Abad M, Ljubović-Obradović D, Vaziri SH, Mirković M, Aryaei AA, Stejić P, Ashouri AR (2013) Comparisons between the Urgonian platform carbonates from eastern Serbia (Carpatho-Balkanides) and northeast Iran (Kopet-Dagh Basin): depositional facies, microfacies, biostratigraphy, palaeoenvironments and palaeoecology. Cretac Res 40:110–130

    Google Scholar 

  • Colombie C, Strasser A (2005) Facies, cycles, and controls on the evolution of a keep-up carbonate platform (Kimmeridgian, Swiss Jura). Sedimentology 52:1207–1227

    Google Scholar 

  • Dashtgard SE, MacEachern JA, Frey SE, Gingras MK (2010) Tidal effects on the shoreface: towards a conceptual framework. Sed Geol 279:42–61

    Google Scholar 

  • Davoudzadeh M, Schmidt K (1981) Contribution to the paleogeography of the Upper Triassic to Middle Jurassic of Iran. Neues Jb Geol Paläontol Abh 162:137–163

    Google Scholar 

  • Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) (2000) Atlas Peri-Tethys, palaeogeographical maps. CCGM/CGMW, Paris, p 268

    Google Scholar 

  • Fürsich FT (1998) Environmental distribution of trace fossils in the Jurassic of Kachchh (Western India). Facies 39:46–53

    Google Scholar 

  • Fürsich FT, Pandey DK (2003) Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Palaeogeogr Palaeoclimatol Palaeoecol 193:285–309

    Google Scholar 

  • Fürsich FT, Werner W, Schneider S (2009a) Autochthonous to parautochthonous bivalve concentrations within transgressive marginal marine strata of the Upper Jurassic of Portugal. Palaeobiol Palaeoenviron 89:161–190

    Google Scholar 

  • Fürsich FT, Wilmsen M, Seyed-Emami K, Majidifard MR (2009b) The Mid-Cimmerian tectonic event (Bajocian) in the Alborz Mountains, northern Iran: evidence of the break-up unconformity of the South Caspian Basin. In: Brunet MF, Wilmsen M, Granath J (eds) South Caspian to Central Iran basins. Geological Society London Special Publication, vol 312, pp 189–203

  • Fürsich FT, Uchman A, Alberti M, Pandey DK (2018) Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: the significance of time-averaging in ichnology. J Palaeogeogr 7:14–31

    Google Scholar 

  • Gaillard C (2012) L. Buatois & M. G. Mangano 2011. Ichnology: Organism-Substrate Interactions in Space and Time. xii + 358 pp. Cambridge University Press. Price £50.00, US$82.00 (HB). ISBN 9780521855556. Geol Mag 149(4):750–750. https://doi.org/10.1017/S0016756811001038

  • Garzanti E, Gaetani M (2002) Unroofing history of Late Paleozoic magmatic arcs within the Turan plate (Tuarkyr, Turkmenistan). Sed Geol 151:67–87

    Google Scholar 

  • Ghasemi-Nejad E, Sabbaghiyan H, Mosaddegh H (2012) Palaeobiogeographic implications of Late Bajocian-Late Callovian (Middle Jurassic) dinoflagellate cysts from the Central Alborz Mountains, northern Iran. J Asian Earth Sci 43:1–10

    Google Scholar 

  • Gibert JM, Goldring R (2007) An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sed Geol 194:1–16

    Google Scholar 

  • Gingras MK, Pemberton SG, Saunders TDA (2001) Bathymetry, sediment texture, and substrate cohesiveness: their impact on Glossifungites trace assemblages at Willapa Bay, Washington. Palaeogeogr Palaeoclimatol Palaeoecol 169:1–21

    Google Scholar 

  • Gingras MK, Pemberton SG, MacEachern JA, Bann KL (2008) A conceptual framework for the application of trace fossils. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied ichnology. SEPM Short Course Notes, vol 52, pp 1–27

  • Gingras MK, MacEachern JA, Dashtgard SE (2012) The potential of trace fossils as tidal indicators in bays and estuaries. In: Longhitano SG, Mellere D, Ainsworth RB (eds) Modern and ancient depositional systems: perspectives, models and signatures. Sedimentary Geology, special issue, vol 279, pp 97–106

  • Golonka J (2000) Geodynamic evolution of the south Caspian Basin. AAPG’s Inaugural Regional International Conference July 9–12, Istanbul, Turkey. Official Program Book. Am Assoc Pet Geol Tulsa 83:40–45

    Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273

    Google Scholar 

  • Haq BU, Shutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68

    Google Scholar 

  • Heydari E, Hassanzadeh J, Wade WJ, Ghazi AM (2003) Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction. Part1-Sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 193:405–423

    Google Scholar 

  • Kalantari A (1987) Biofacies map of Kopet Dagh Region. In: Exploration and production. National Iranian Oil Company, Tehran

  • Knaust D (1998) Trace fossils and ichnofabrics on the Lower Muschelkalk carbonate ramp (Triassic) of Germany: tool for high-resolution sequence stratigraphy. Geol Rundsch 87:21–31

    Google Scholar 

  • MacEachern JA, Bann KL (2008) The role of ichnology in refining shallow marine facies models. In: Hampson GJ, Steel RJ, Burgess PB, Dalrymple RW (eds) Recent advances in models of siliciclastic shallow-marine stratigraphy. SEPM Special Publication, vol 90, pp 73–116

  • MacEachern JA, Burton JA (2000) Firmground Zoophycos in the Lower Cretaceous Viking Formation, Alberta: a distal expression of the Glossifungites Ichnofacies. Palaios 15:387–398

    Google Scholar 

  • MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007) The ichnofacies paradigm: a fifty-year retrospective. In Miller W (ed) Trace fossils. Concepts, problems, prospects, vol 52–77. Elsevier, Amsterdam. https://doi.org/10.1016/B978-044452949-7/50130-3.

  • Malpas JA, Gawthorpe RL, Pollard JE, Sharp IR (2005) Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt: implications for depositional processes and sequence stratigraphic evolution. Palaeogeogr Palaeoclimatol Palaeoecol 215:239–264

    Google Scholar 

  • Mángano M, Buatois L, Westr R, Maples CG (2002) Ichnology of a Pennsylvanian equatorial tidal flats—the Stull Shale Member at Waverly, eastern Kansas. Kansas Geol Surv Bull 245:1–133

    Google Scholar 

  • McIlroy D (2007) Ichnology of a tide-dominated deltaic depositional system: Lajas Formation, Neuquén Province, Argentina. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–organism interactions a multifaceted ichnology. SEPM Special Publication, vol 88, pp 193–210

  • Miller W (2007) Trace fossils concepts, problems, prospects. Elsevier, Amsterdam, p 611

    Google Scholar 

  • Molaei M, Vaziri SH, Raisossadat SN, Taherpour Khalil Abad M, Taheri J (2019) Late Barremian-Early Aptian ammonites from the Tirgan Formation, Kopet-Dagh sedimentary basin, NE Iran. J Sci Islam Repub Iran 30(1):51–59

    Google Scholar 

  • Monaco P, Checconi A (2010) Taphonomic aspects of the Miocene ichnofossil-lagerstätte from calcarenite turbiditic beds in the Verghereto Marls Formation (Northern Apennines, Italy). Riv Ital Paleontol Stratigr 1100:237–252

    Google Scholar 

  • Moosavirad SM, Janardhan MR, Sethumadhav MS, Moghadam MR, Shankara M (2011) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Geochemistry 71:279–288

    Google Scholar 

  • Moosavizadeh SMA, Mahboubi A, Moussavi-Harami R, Kavoosi MA, Schlagintweit F (2015) Sequence stratigraphy and platform to basin margin facies transition of the Lower Cretaceous Dariyan Formation (northeastern Arabian Plate, Zagros fold-thrust belt, Iran). Bull Geosci 90(1):145–172

    Google Scholar 

  • Mosavinia A, Lehmann J, Wilmsen M (2014) Late Albian ammonites from the Aitamir Formation (Koppeh Dagh, northeast Iran). Cretac Res 50:72–88

    Google Scholar 

  • Moussavi-Harami R, Brenner RL (1992) Geohistory analysis and petroleum reservoir characteristics of Lower Cretaceous (Neocomian) Sandstones, Eastern Kopet-Dagh Basin, Northeastern Iran. Am Assoc Pet Geol Bull 76:1200–1208

    Google Scholar 

  • Oomali R, Shahriari S, Hafezi Moghadams N, Omidi P, Eftekharnejahd J (2008) A model for active tectonics in Kopet-Dagh (North-East Iran). World Appl Sci J 3:312–316

    Google Scholar 

  • Palma RM, López-Gómez J, Piethé RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province) Neuquén Basin, Argentina: facies and depositional sequences. Sed Geol 195:113–134

    Google Scholar 

  • Parras A, Casadio S (2005) Taphonomy and sequence stratigraphic significance of oyster-dominated concentrations from the San Julián formation, Oligocene of Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 217:47–66

    Google Scholar 

  • Pemberton SG, Wightman DM (1992) Ichnological characteristics of brack-ish water deposits. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration. SEPM Core Workshop Notes, vol 17, pp 141–169

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, Short Course Notes 15, St. John’s, p 353

  • Pemberton SG, MacEachern JA, Saunders T (2004) Stratigraphic applications of substrate-specific ichnofacies: delineating discontinuities in the rock record. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London, Special Publication, vol 228, pp 29–62

  • Pomar L, Bassant Ph, Brandano M, Ruchonnet C, Janson X (2012) Impact of carbonate producing biota on platform architecture: insights from Miocene examples of the Mediterranean region. Earth-Sci Rev 113:186–211

    Google Scholar 

  • Raisossadat SN, Moussavi-Harami R (2000) Lithostratigraphic and facies analyses of the Sarcheshmeh Formation (Lower Cretaceous) in the eastern Kopet Dagh Basin. NE Iran Cretac Res 21(4):507–516

    Google Scholar 

  • Rodríguez-Tovar FJ, Valera FP, López AP (2007) Ichnological analysis in high-resolution sequence stratigraphy: The Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sed Geol 198:293–307

    Google Scholar 

  • Ruffell A, Wach G (1998) Firmgrounds key surfaces in the recognition of parasequences in the Aptian Lower Greensand Group, Isle of Wight (southern England). Sedimentology 45:91–107

    Google Scholar 

  • Ruttner AW (1993) Southern borderland of Triassic Laurasia in north-east Iran. Geol Rundsch 82:110–120

    Google Scholar 

  • Saller A, Reksalegora SW, Bassant P (2010) Sequence Stratigraphy and Growth of Shelfal Carbonates in a Deltaic Province, Kutai Basin, Offshore East Kalimantan, Indonesia. In: Morgan WA, George A, Harris PM, Kupecz JA, Sarg FJ (eds) cenozoic carbonate systems of Australasia. SEPM Special Publication Tulsa, vol 95, pp 147–174

  • Sarkar S, Kumar Ghosh S, Chakraborty C (2009) Ichnology of a Late Palaeozoic ice-marginal shallow marine succession: Talchir Formation, Satpura Gondwana basin, central India. Palaeogeogr Palaeoclimatol Palaeoecol 283:28–45

    Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Google Scholar 

  • Seyed-Emami K, Fürsich FT, Wilmsen M, Majidifard MR, Shekarifard A (2008) Jurassic ammonite fauna of the Shemshak Formation at Shahmirzad. Iran Acta Palaeontol Pol 53:237–260

    Google Scholar 

  • Sharafi M, Ashuri M, Mahboubi A, Moussavi-Harami R (2012) Stratigraphic application of Thalassinoides ichnofabric in delineating sequence stratigraphic surfaces (Mid-Cretaceous), Kopet-Dagh Basin, northeastern Iran. Palaeoworld 21:202–216

    Google Scholar 

  • Sharafi M, Mahboubi A, Moussavi-Harami R, Ashuri M, Rahimi B (2013) Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Aitamir Formation (Albian–Cenomanian), Kopet-Dagh Basin, northeastern Iran. J Asian Earth Sci 67–68:171–186

    Google Scholar 

  • Sharafi M, Mahboubi A, Moussavi-Harami R, Mosaddegh H, Gharaie MHM (2014) Trace fossils analysis of fluvial to open marine transitional sediments: example from the Upper Devonian (Geirud Formation), Central Alborz. Iran Palaeoworld 23:50–68

    Google Scholar 

  • Sharafi M, Longhitano SG, Mahboubi A, Moussavi-Harami R, Mosaddegh H (2016) Sedimentology of a transgressive mixed-energy (wave/tide-dominated) estuary, Upper Devonian Geirud Formation (Alborz Basin, northern Iran). Int Assoc Sedimentol 48:261–292

    Google Scholar 

  • Strasser A (1986) Ooids in Purbeck limestones (Lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33:711–727

    Google Scholar 

  • Taherpour Khalil Abad M, Schlagintweit F, Vaziri SH, Aryaei AA, Ashouri AR (2013) Balkhania balkhanica Mamontova, 1966 (benthic foraminifera) and Kopetdagaria sphaerica Maslov, 1960 (dasycladacean algae) from the Lower Cretaceous Tirgan Formation of the Kopet-Dagh mountain range (NE-Iran) and their paleobiogeographic significance. Facies 59(1):267–285

    Google Scholar 

  • Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc 150:141–148

    Google Scholar 

  • Taylor AM, Goldring R, Gowland S (2003) Analysis and application of ichnofabric. Earth Sci Rev 60:227–259

    Google Scholar 

  • Thierry J (2000) Middle Callovian (157–155 Ma). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys, palaeogeographical maps. CCGM/CGMW, Paris, pp 1–97

    Google Scholar 

  • Uchman A, Kremnayr HG (2004) Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene Molasse of Upper Austria. Jahrb Geol Bundesanst 144:233–251

    Google Scholar 

  • Uroza CA, Steel RJ (2008) A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway. Sed Geol 203:229–245

    Google Scholar 

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Zamani PM (2010) Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran. Facies 56:59–87

    Google Scholar 

  • Wilmsen M, Fürsich FT, Majidifard MR (2013) The Shah Kuh Formation, a latest Barremian-Early Aptian carbonate platform of Central Iran (Khur area, Yazd Block). Cretac Res 39:183–194

    Google Scholar 

  • Wilmsen M, Fürsich FT, Taheri J (2009) The Shemshak Group (Lower–Middle Jurassic) of the Binalud Mountains, NE Iran: stratigraphy, facies and geodynamic implications. In: Brunet MF, Wilmsen M, Granath J (eds) South Caspian to Central Iran Basins. Geological Society of London, Special Publication 312, pp 175–188

  • Zanchi A, Berra F, Mattei M, Ghassemi MR, Sabouri J (2006) Inversion tectonics in central Alborz. Iran J Struct Geol 28:2023–2037

    Google Scholar 

  • Zonneveld JP, Gingras MK, Pemberton SG (2001) Trace fossil assemblages in a Middle Triassic mixed siliciclastic-carbonate marginal marine depositional system, British Columbia. Palaeogeogr Palaeoclimatol Palaeoecol 166:249–276

    Google Scholar 

Download references

Acknowledgements

We would like to thank the journal reviewers Jens Lehmann (Bremen, Germany) and Jochen Kuss (Bremen, Germany) as well as the journal Associate Editor for their helpful comments and constructive criticism that greatly improved this paper. The Dr. Mehdi Daraei (Zanjan, IASBS) is heartly acknowledged for improving the English of the manuscript. The study by RT was funded by the project PID2019-104625RB-100 (Secretaría de Estado de I + D + I, Spain), Research Group RNM-178 (Junta de Andalucía), B-RNM-072-UGR18 (FEDER Andalucía), and P18-RT-4074 (Junta de Andalucía), and the Scientific Excellence Unit UCE-2016-05 (Universidad de Granada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Sharafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafi, M., Rodríguez-Tovar, F.J., Janočko, J. et al. Environmental significance of trace fossil assemblages in a tide‒wave-dominated shallow-marine carbonate system (Lower Cretaceous), northern Neo-Tethys margin, Kopet-Dagh Basin, Iran. Int J Earth Sci (Geol Rundsch) 111, 103–126 (2022). https://doi.org/10.1007/s00531-021-02101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02101-0

Keywords

Navigation