Skip to main content
Log in

Water quality assessment and hydrogeochemical characterization of the Ouargla complex terminal aquifer (Algerian Sahara)

  • 3rd CAJG 2020
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract 

The complex terminal (CT) aquifer is a very important water resource in Ouargla regions. Most of the population depends on groundwater for their daily needs especially for drinking, house needs, and irrigation purposes. The present study confers groundwater quality assessment for drinking and irrigational purposes and the hydrogeochemical characteristics of the CT aquifer of Ouargla. For this study, sixty-four (64) groundwater samples were collected and analyzed for different physicochemical parameters (pH, EC, TDS, major cations, and anions). The results show that water quality does not meet the WHO drinking water standards. The CT aquifer appears highly mineralized and very hard, and concentrations of major elements are often above recommended standards. Besides, the water quality index (WQI) was used to approach the water potability. This index highlighted three classes of water quality; poor (52%), very poor (33%), and non-potable (15%). The assessment of water quality for agriculture was carried out based on EC, SAR (electrical conductivity, sodium adsorption ratio), the percentage of sodium (Na%), Kelly ratio (KR), permeability index (PI), the risk of magnesium (MH), residual sodium carbonate (RSCB), and salinity potential (PS). The obtained results revealed that the CT aquifer waters are unsuitable for irrigation with reference to EC and PS. However, this groundwater can be used in highly permeable soil with good leaching and for salt-tolerant plants. The Piper trilinear diagram of groundwater shows the dominance of Mg-Na-SO4 (51%) and Mg-Na-Cl (49%) facies. Besides, the Gibbs diagrams, the chemical reports, the saturation indices and the principal component analysis (PCA) show that the groundwater chemistry, the dissolution of evaporite and the cation exchange are the factors governing the groundwater salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

CI:

Continental intercalaire

CT:

Complex terminal

SASS:

The North Sahara Aquifer System

References

  • Abbasnia A, Alimohammadi M, Mahvi AH, Nabizadeh R, Yousefi M, Mohammadi AA, Pasalari H, Mirzabeigi M (2018) Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief 16:182–192. https://doi.org/10.1016/j.dib.2017.11.003

    Article  Google Scholar 

  • Adimalla N, Wu J (2019) Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Hum Ecol Risk Assess An Int J 25(1–2):191-216.521. https://doi.org/10.1080/10807039.2018.1546550

    Article  Google Scholar 

  • Alassane A, Trabelsi R, Léonce F, Dovonon DJO, Boukari M, Zouari K, Mama D (2015) Chemical evolution of the continental terminal shallow aquifer in the south of coastal sedimentary basin of Benin (West-Africa) using multivariate factor analysis. J Water Resour Prot 07(06):496–515. https://doi.org/10.4236/jwarp.2015.76040

    Article  Google Scholar 

  • Anchal S, Rajiv G, Ashok Kumar G (2019) Impact assessment of leachate pollution potential on groundwater: an indexing method. J Environ Eng 2000 146(3):05019007

    Google Scholar 

  • Annadasankar R. Tirumalesh K. Hemant M. Uday K S. Sadasiva B (2018) Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Appl Water Sci.

  • Adams S, Tredoux G, Harris C, Titus R, Pietersen K (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo. South Africa. J Hydrol 241:91–103

    Article  Google Scholar 

  • Antonakos A. Nicolaos L (2000) Hydrodynamic characteristics and nitrate propagation in Sparta aquifer. Wat Res 34 16 https://doi.org/10.1016/S0043-135400160-3

  • Baba Sy M (2005) Recharge et paléorecharge du systèmeaquifère du Sahara Septentrional. PhD Thesis, Université of Tunis, Tunis, Tunisia.

  • Banda Talent Diotrefe and Muthukrishna Vellaisamy Kumarasamy (2020) Development of water quality indices (WQIs): a review. Pol J Environ Stud 29(3):2011–21. https://doi.org/10.15244/pjoes/110526

    Article  Google Scholar 

  • Bekkoussa B, Jourde H, Batiot-Guilhe C, Meddi M, Khaldi A, Azzaz H (2013) Origine de La Salinité et Des Principaux Éléments Majeurs Des Eaux de La Nappe Phréatique de La Plaine de Ghriss Nord-Ouest Algérien. Hydrol Sci J 58(5):1111–1127. https://doi.org/10.1080/02626667.2013.800639

    Article  Google Scholar 

  • Ben Alya Mohsen, Saidi Salwa, Zemni Thouraya, Zargouni Fouad (2013) Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes. South-Eastern Tunisia). Environ Earth Sci 71(8):3387–3421. https://doi.org/10.1007/s12665-013-2729-9

    Article  Google Scholar 

  • Biao Z, Dan Z, Pengpeng Z, Shen Q, Fu L, Guangcai W (2020) Hydrochemical characteristics of groundwater and dominant water–rock interactions in the Delingha area. Qaidam Basin. Northwest China. Water 2020 12:836. https://doi.org/10.3390/w12030836

    Article  Google Scholar 

  • Bouselsal B, Zeddouri A, Belksier MS (2015) Fenazi B (2015) Contribution de la Méthode de Vulnérabilité Intrinsèque GOD à l’Etude de la Pollution de la Nappe Libre d’Ouargla (SE Algérie). Int J Environ Global Clim Change 3(4):P92-99

    Google Scholar 

  • Brindha K, Kavitha R (2015) Hydrochemical assessment of surface water and groundwater quality along Uyyakondan channel. south India. Environ Earth Sci 73(9):5383–5393

    Article  Google Scholar 

  • Brown RM, McClelland NI, Deininger RA, Tozer RG (1970) A water quality index–do we dare? Water Sew. Works 117:339–343

    Google Scholar 

  • Castany G (1982) Bassin sédimentaire du Sahara septentrional (Algérie-Tunisie). Aquifères du continental intercalaire et du complexe terminal. Bull BRGM2 III(2):127–147

    Google Scholar 

  • Conrad, G., Fontes, J. Ch., 1972. Circulations, aires et périodes de recharge dans les nappes aquifères du Nord-Ouest saharien: données isotopiques (18O, 13C, 14C). Comptes Rendus de l’Académie des Sciences 275, 165–168. Paris.

  • Choramin M, Safaei A, Khajavi S, Hamid H, Abozari S (2015) Analyzing and studding chemical water quality parameters and its changes on the base of Schuler. Wilcox and Piper diagrams (project: Bahamanshir River). WALIA J 31:22–27

    Google Scholar 

  • Cornet A (1964) Introduction à l'hydrogéologie saharienne. Géog. Phys. et Géol. Dyn.. vol. VI. fasc. 1.5: 72.

  • Cornet A, Gouscov N (1952) Les eaux du Crétacé inférieur continental dans le Sahara algérien: nappe dite “Albien”, in: Congrès géologique international, vol, tome II. Alger. p 30.

  • Davraz A, Özdemir A (2014) Groundwater quality assessment and its suitability in Çeltikçi plain (Burdur/Turkey). Environ Earth Sci 72(4):1167–1190

    Article  Google Scholar 

  • Deepanjau M & Navindu C (2000) Nitrate pollution of groundwater and associated human health disorders. Indian Journal of Environmental Health. 42(1). 28–39 https://www.academia.edu/download/13611774/2000-Nitrate-pollution.pdf

  • Doneen LD (1962) The influence of crop and soil on percolatingwater. In: Proceedings 11961 biennial conference on groundwaterrecharge. pp 156–163.

  • EgbueriJohnbosco C, Mgbenu Chukwuma N, Digwo Daniel C, Nnyigide Chibuzo S (2021) A multi-criteria water quality evaluation for human consumption. Irrigation and Industrial Purposes in Umunya Area, Southeastern Nigeria. Int J Environ Anal Chem 00(00):1–25. https://doi.org/10.1080/03067319.2021.1907360

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Engle-wood Cliffs, p 604

    Google Scholar 

  • Gaury PK, Meena NK, Mahajan AK (2018) Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh, India. Environ Monit Assess 190(2):84. https://doi.org/10.1007/s10661-017-6451-z

    Article  Google Scholar 

  • Ghalib Hussein B (2017) Groundwater chemistry evaluation for drinking and irrigation utilities in East Wasit Province, central Iraq. Appl Water Sci. https://doi.org/10.1007/s13201-017-0575-8

    Article  Google Scholar 

  • Ghouili Nesrine, Hamzaoui-Azaza Fadoua, Zammouri Mounira, Faouzi Mohamed, Faten Zaghrarni, Horriche Jarraya, Teresa Maria, de Melo Condesso (2018) Groundwater quality assessment of the Takelsa phreatic aquifer (Northeastern Tunisia) using geochemical and statistical methods: implications for aquifer management and end-users. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-3473-1

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gupta SK, Gupta IC (1987) Management of saline soils and water. Oxford and IBH Publ. Co., New Delhi, India, p 399p

    Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the “complexe terminal” aquifer in the Algerian Sahara. Hydrogeol J 11:483–495. https://doi.org/10.1007/s10040-003-0263-7

    Article  Google Scholar 

  • Guendouz A (1985) Contribution à l’étude hydrochimique et isotopique des nappes profondes du Sahara septentrional, Algérie (A contribution to the hydrochemical and isotopic study of the northern Sahara deep groundwaters in Algeria). Dissertation, University Paris-sud, Orsay, France

  • Haider Husnain, Mohammed Hammed Alkhowaiter, Md Shafiquzzaman, Saleem S. AlSaleem, Meshal Almoshaogeh, and Fawaz Alharbi. 2019. Spatiotemporal water quality variations in smaller water supply systems: using modified CCME WQI from groundwater source to distribution networks. Water (Switzerland) 11 (9)https://doi.org/10.3390/w11091884

  • Hallouche B, Fatiha H, Abbas M (2017) Lahcen Benaabidate (2017) Spatial mapping of irrigation groundwater quality of the High Mekerra Watershed (Northern Algeria). Arab J Geosci 10:233. https://doi.org/10.1007/s12517-017-3019-8

    Article  Google Scholar 

  • Hamlat A, Azeddine Guidoum (2018) Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Applied Water Science. Springerhttps://doi.org/10.1007/s13201-018-0863-y

  • Hajji S, Bachaer A, Ibtissem R, Nabila A, Emna B, Salem B (2018) Assessment and mapping groundwater quality using hybrid PCA-WQI model: case of the Middle Miocene Aquifer of Hajeb Layoun-Jelma Basin (Central Tunisia). Arabian Journal of Geosciences 11 (20)https://doi.org/10.1007/s12517-018-3924-5

  • Horton RK (1965) An index number systemfor rating water quality. J Water Pollut Control Fed 37(3):300–306

    Google Scholar 

  • Houria B, Mahdi K, Fatima Zohra T (2020) Hydrochemical characterisation of groundwater quality: Merdja Plain (Tebessa Town, Algeria). Civ Eng J 6 2, February, 2020.

  • Hui J, Hui Q, Le Z, Wenwen F, Haike W, Yanyan G (2020) Alterations to groundwater chemistry due to modern water transfer for irrigation over decades. Sci Total Environ 717:137170. https://doi.org/10.1016/j.scitotenv.2020.137170

    Article  Google Scholar 

  • Kamel Samir (2010) Recharge of the plio-quaternary water table aquifer in Tunisian chotts region estimated from stable isotopesEnviron Earth Sci 63 1https://doi.org/10.1007/s12665-010-0683-3

  • Kansoh Rawya, Mohamed Abd-El-Mooty, Rania Abd-El-Baky (2020) Computing the water budget components for lakes by using meteorological data. Civ Eng J 6 7, July, 2020

  • Karunanidhi D, Aravinthasamy P, Subramani T, Muthusankar G (2020) Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River Basin of South India. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00613-3

    Article  Google Scholar 

  • Kavianpour M, Seyedabadi M, Moazami S, Aminoroayaie Yamini O (2020) Copula based spatial analysis of drought return period in Southwest of Iran. Periodica Polytechnica Civ Eng 64(4):1051–1063. https://doi.org/10.3311/PPci.16301

    Article  Google Scholar 

  • Kebili M, Bouselsal B, Gouaidia L (2021) Hydrochemical characterization and water quality of the continental intercalare aquifer in the Ghardaïa Region (Algerian Sahara). J Ecol Eng 22(10):152–162. https://doi.org/10.12911/22998993/142041

    Article  Google Scholar 

  • Kelly WP (1963) Use of saline irrigation water. Soil Sci 95(4):355–391

    Google Scholar 

  • Kilian C (1931) Des principaux complexes continentaux du Sahara. C.r. Somm Soc gdol Fr. 109–111

  • Kraiem Z, Zouari K, Bencheikh N, Agoun A, Abidi B (2014) Processus de minéralisation de la nappe du Plio-Quaternaire dans la plaine de Segui-Zograta (Sud-Ouest tunisien). Hydrol Sci J. https://doi.org/10.1080/02626667.2013.877587

    Article  Google Scholar 

  • Lee YW, Dahab MF, Bogardi I (1991) Nitrate risk management under uncertainty. J Water Resour Plan Manag 118(2):151–165

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2016) Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci 9(1):1–17

    Article  Google Scholar 

  • Liu Jiutan, Feng Jianguo, Gao Zongjun, Wang Min, Li Guiheng, Shi Mengjie, Zhang Hongying (2019) Hydrochemical characteristics and quality assessment of groundwater for drinking and irrigation purposes in the Futuan River Basin, China. Arab J Geosci 12:560:12:560. https://doi.org/10.1007/s12517-019-4732-2

    Article  Google Scholar 

  • Manish K, Ramanathan A, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the ground-water environment of Delhi, India. J Environ Geol 50:1025–1039. https://doi.org/10.1016/B978-0-12-815413-7.00006-7

    Article  Google Scholar 

  • Mitiche R, Metaiche M, Kettab A (2010) Desalination in Algeria: current situation and development programs. Desalin Water Treat 14(1–3):259–264

    Article  Google Scholar 

  • Mohd S, Athar H, Gauhar M (2016) Water quality index development for groundwater quality assessment of Greater Noida Sub-Basin. Cogent Eng 117(1):1–17. https://doi.org/10.1080/23311916.2016.1177155

    Article  Google Scholar 

  • Nafisatu Zakaria, Geophrey Anornu, Dickson Adomako, Frederick Owusu-Nimo, and Abass Gibrilla (2021) Evolution of Groundwater Hydrogeochemistry and Assessment of Groundwater Quality in the Anayari Catchment. Groundw Sustain Dev 12 (February 2021) https://doi.org/10.1016/j.gsd.2020.100489

  • NOM (2018) National Office of Meteorology of Ouargla : Bulletins mensuels de relevé des paramtres climatologiques en Algérie (période 2007–2018). Office national météorologique, Ouargla. Algérie.

  • NSOO (2018) National Statistics Office of Ouargla 2008.

  • OSS (2003) Système aquifère du Sahara septentrional: gestion commune d’un bassin transfrontière. Rapport de synthèse. OSS. Tunisie.

  • Ouarekh M, Bouselsal B, Belksier MS, Benaabidate L (2021) Water quality assessment and hydrogeochemical characterization of the complex terminal aquifer in Souf valley, Algeria. Arab J Geosci 14:2239. https://doi.org/10.1007/s12517-021-08498-x

    Article  Google Scholar 

  • Panpan X, Wenwen F, Hui Q, Qiying Z (2019) Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin. China Int J Environ Res Public Health 16:1492. https://doi.org/10.3390/ijerph16091492

    Article  Google Scholar 

  • Pawan K, Ambrish K M, Anil K (2019) Groundwater geochemical facie: implications of rock-water interaction at the Chamba city (HP). northwest Himalaya. India Environ Sci Pollut Res 2019 https://doi.org/10.1007/s11356-019-07078-7.

  • Person J (1978) Irrigation et drainage en Tunisie problème posé par la salinité des sols et des eaux. Bull. BRGM (2éme série) section III. n°2 : 143–151.

  • Piper AM (1944) Graphical interpretation of water analysis. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Raghunath HM (1987) Groundwater, 2nd edn. Wiley Eastern Ltd., New Delhi, p 563p

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkalis soils. US department of agriculture Handbook. Diagnosis and Improvement of Saline and Alkali Soils

  • Rodier J (1984) L’analyse de l’eau, 7ème édition DUNOD. 1353p

  • Saibi H, Mesbah M, Moulla AS, Guendouz AH (2016) Principal component chemical bacteriological and isotopic analyses of Oued-Souf Groundwaters ( Revised ). Environ Earth Sci. https://doi.org/10.1007/s12665-015-4878-5

    Article  Google Scholar 

  • Sail N, Saighi O (2019) Hydrogeochemical characterization of the complexe terminal aquifer system in hyper-arid zones : the case of Wadi Mya Basin. Arab J Geosci 12:793. https://doi.org/10.1007/s12517-019-4917-8

  • Satouh A, Bouselsal A, Chellat S, Benaabidate L (2021) Determination of groundwater vulnerability using the DRASTIC method in Ouargla Shallow Aquifer (Algerian Sahara). J Ecol Eng 22(6):1–8. https://doi.org/10.12911/22998993/137680

    Article  Google Scholar 

  • Schoeller H (1962) Les eaux souterraines : Hydrologie dynamique et chimique. Recherche, exploitation et évaluation des ressources. Masson et Cie. Editions, 642p.

  • Selvakumar S, Chandrasekar N, Kumar G (2017) Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore. India Water Resour Ind 17:26–33. https://doi.org/10.1016/j.wri.2017.02.002

    Article  Google Scholar 

  • Shah T (2005) Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Sci Technol 51(8):27–37

    Article  Google Scholar 

  • Shaikh Huzefa, Himanshu Gaikwad, Ajaykumar Kadam, and Bhavana Umrikar (2020) “Hydrogeochemical characterization of groundwater from semiarid region of Western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment.” Appl Water Sci 10 9https://doi.org/10.1007/s13201-020-01287-z

  • Shukla Saurabh and Abhishek Saxena (2020) Groundwater quality and associated human health risk assessment in parts of Raebareli District. Uttar Pradesh. India. Groundwater for Sustainable Development. Vol. 10. Elsevier B.V. https://doi.org/10.1016/j.gsd.2020.100366.

  • Singh PK, Tiwari AK, Panigarhy BP, Mahato MK (2013) Water quality indices used for water resources vulnerability assessment using GIS technique: a review. Int J Earth Sci Eng 6(6–1):1594–1600

    Google Scholar 

  • Slimani Rabia, Abdelhamid Guendouz, Fabienne Trolard, Adnane Souffi Moulla, Belhadj Hamdi-aïssa (2017) Identification of dominant hydrogeochemical processes for groundwaters in the Algerian Sahara supported by inverse modeling of chemical and isotopic data” 1669–91. https://doi.org/10.5194/hess-21-1669-2017

  • Tiwari AK, Singh PK, Mahato MK (2014) GIS-based evaluation of water quality index of groundwater resources in West Bokaro coalfield. India Curr World Environ 9(3):843–850

    Article  Google Scholar 

  • Trabelsi R, Zouari K (2019) Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: a study from North Eastern of Tunisia. Groundw Sustain Dev 8:413–427. https://doi.org/10.1016/j.gsd.2019.01.006

    Article  Google Scholar 

  • Troudi Nizar, Hamzaoui-Azaza Fadoua, Tzoraki Ourania, Melki Fatheddine, Zammouri Mounira (2020) Assessment of groundwater quality for drinking purpose with special emphasis on salinity and nitrate contamination in the shallow aquifer of Guenniche (Northern Tunisia). Environ Monit Assess (2020) 192:641. https://doi.org/10.1007/s10661-020-08584-9

    Article  Google Scholar 

  • Udhayakumar RP, Manivannan K, Raghu, Vaideki S (2016) Assessment of physico-chemical characteristics of water in Tamilnadu”. Ecotoxicol Environ Saf 134:474–477. https://doi.org/10.1016/j.ecoenv.2016.07.014

    Article  Google Scholar 

  • UNESCO (1972) Etude des Ressources en Eau de Sahara Septentrional. (7 vols. etannexes). UNESCO. Paris. France.

  • Vasistha P, Ganguly R (2020a) Water quality assessment of natural lakes and its importance: an overview. Mater Today Proc 32(2020):544–552. https://doi.org/10.1016/j.matpr.2020.02.092

    Article  Google Scholar 

  • Vasistha P, Ganguly R (2020b) Assessment of spatio-temporal variations in lake water body using indexing method. Environ Sci Pollut Res 27:41856–41875. https://doi.org/10.1007/s11356-020-10109-3

    Article  Google Scholar 

  • Venkata M, Jayrama S, Reddy S (1995) Assessment of overall water quality of Tirupati. Poll Res 14(3):275–282

    Google Scholar 

  • Vikas C, Kushwaha R, Ahmad W (2014) Hydrochemical appraisal and geochemical evolution of groundwater with special reference to nitrate contamination in aquifers of a semi-arid terrain of NW India. Water Qual Expo Health 7(3):1–15

    Google Scholar 

  • Weiner E (2013) Applications of environmental aquatic chemistry: a practical guide, 3rd edn. CRC Press. Taylor and Francis, Boca Raton

    Google Scholar 

  • WHO (2011) Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation water (Circular 969). USDA, Washington

    Google Scholar 

  • Wolfe AH, Patz JA (2002) Reactive nitrogen and human health: acute and long-term implications. Ambio 31(2):120–125. https://doi.org/10.1579/0044-7447-31.2.120

    Article  Google Scholar 

  • XLSTAT (2014) Logiciel version 2014.5.03 downloadable at http://www.xlstat.com/info@xlstat.com .

  • Zeddouri A, Derradji F, Hadj-Saïd S (2010) Salinity origin of terminal complex water in Ouargla Region (South East of Algeria). Phys Chem News 53:62–69

    Google Scholar 

  • Zeddouri A (2008) Caractérisation hydrogéologique et hydrochimique des nappes du complexe terminal de la région de Ouargla. Thesis. University Annaba, Algeria

    Google Scholar 

  • Zhang LL, Zhao ZQ, Zhang W, Tao ZH, Huang Lu, Yang JX, Qi Xin Wu, Liu CQ (2016) Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang Drainage Basins. Environ Earth Sci 75(6):1–18. https://doi.org/10.1007/s12665-015-5115-y

    Article  Google Scholar 

  • Zhou Y, Li P, Xue L, Dong Z, Li D (2020) Geochemistry solute geochemistry and groundwater quality for drinking and irrigation purposes : a case study in Xinle City, North China. Chem Erde 126:125609. https://doi.org/10.1016/j.chemer.2020.125609

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Kharroubi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Broder J. Merkel

This paper was selected from the 3rd Conference of the Arabian Journal of Geosciences (CAJG), Tunisia 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharroubi, M., Bouselsal, B., Ouarekh, M. et al. Water quality assessment and hydrogeochemical characterization of the Ouargla complex terminal aquifer (Algerian Sahara). Arab J Geosci 15, 251 (2022). https://doi.org/10.1007/s12517-022-09438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09438-z

Keywords

Navigation