Skip to main content

Advertisement

Log in

Spatial assessment of water erosion hazard in Chiffa wadi watershed and along the first section of the Algerian North-South highway using remote sensing data, RUSLE, and GIS techniques

  • ArabGU2016
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Algerian North-South highway is regarded as the country’s project of the century given its role in the socio-economic development of the country. Recently implemented, its first section “Medea-Chiffa” is built parallel to the old national road (RN1) where several ground instabilities related to water erosion hazard were repeatedly recorded. These instabilities affect continuously the roadside slopes and cause traffic disruptions with negative socio-economic impacts on these areas. In this context, this study aims to evaluate the extent of water erosion phenomenon in the Chiffa wadi watershed and identify areas prone to this hazard along the new North-South highway and the old national road (RN1) sections by applying a GIS-RUSLE approach. The resulted water erosion hazard map was produced by multiplying the raster layers of RUSLE factors, namely, climate (R), topography (LS), soil (K), vegetation (C), and conservation practices (P). The data used in these factors’ calculation were mainly collected from public institutions or available online. Even though this method has been already applied in several studies, it has not been used in assessing water erosion hazard along a road infrastructure. The results of this approach allowed the estimation of soil loss rates in the watershed and the delineation of the most affected areas, while the combination of the resulting water erosion map with the road chainage of the two infrastructures allowed identification by kilometric points of areas highly to extremely exposed to water erosion along the roadside slopes of the two road sections. This approach can be used as a key tool for the proper management and protection of road infrastructures to ensure their well-functioning and reduce their vulnerability to water erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10(8):194

    Article  Google Scholar 

  • Amare S, Langendoen E, Keesstra S, van der Ploeg M, Gelagay H, Lemma H, van der Zee SE (2021) Susceptibility to gully erosion: applying random forest (RF) and frequency ratio (FR) approaches to a small catchment in Ethiopia. Water 13(2):216

    Article  Google Scholar 

  • Amiri M, Pourghasemi HR, Ghanbarian GA, Afzali SF (2019) Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 340:55–69

    Article  Google Scholar 

  • Anache JAA, Bacchi CGV, Panachuki E, Sobrinho TA (2016) Assessment of methods for predicting soil erodibility in soil loss modeling. Geociênc (São Paulo) 34(1):32–40

    Google Scholar 

  • Anache JAA, Flanagan DC, Srivastava A, Wendland EC (2018) Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 622:140–151

    Article  Google Scholar 

  • Angeli, L., Bottai, L., Costantini, R., Ferrari, R., Innocenti, L., & Maracchi, G. (2007). Stima della sensibilità all’erosione del suolo attraverso l’analisi di scenari climatici. Istituto Di Biometeorologia, CNR, Firenze.

  • Arabameri A, Cerda A, Rodrigo-Comino J, Pradhan B, Sohrabi M, Blaschke T, Tien Bui D (2019) Proposing a novel predictive technique for gully erosion susceptibility mapping in arid and semi-arid regions (Iran). Remote Sens 11(21):2577

    Article  Google Scholar 

  • Atoma, H., Suryabhagavan, K. V, & Balakrishnan, M. (2020). Soil erosion assessment using RUSLE model and GIS in Huluka watershed, Central Ethiopia. Sustain. Water Resour. Manag, 6(1), 12.

  • Benchettouh A, Kouri L, Jebari S (2017) Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab J Geosci 10(4):79

    Article  Google Scholar 

  • Bles J-L (1971) Etude tectonique et microtectonique d’un massif autochtone tellien et de sa couverture de nappes; le Massif de Blida (Algerie du Nord). Bull. Soc 7(5–6):498–511

    Google Scholar 

  • Bouderbala D, Souidi Z, Donze F, Chikhaoui M, Nehal L (2018) Mapping and monitoring soil erosion in a watershed in western Algeria. Arab J Geosci 11(23):744

    Article  Google Scholar 

  • Bouguerra, H. (2018). Quantification et modélisation des transports solides, cartographie des zones à risques d’érosion hydrique par utilisation d’un SIG: application aux bassins de Bouhamdane et Ressoul (Nord-Est Algérien), Thèse de doctorat 3éme Cycle.

  • Bouguerra H, Bouanani A, Khanchoul K, Derdous O, Tachi SE (2017) Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. J. Water Land Dev 32(1):13–23. https://doi.org/10.1515/jwld-2017-0002

    Article  Google Scholar 

  • Bouhadeb CE, Menani MR, Bouguerra H, Derdous O (2018) Assessing soil loss using GIS based RUSLE methodology. Case of the Bou Namoussa watershed–North-East of Algeria. J. Water Land Dev. 36(1):27–35

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2002). The Nature and Properties of Soils , Upper Saddle River. Macmillan, New Jersey. Agrofor. Syst, 54(3), 249.

  • Brown LC, Foster GR (1987) Storm erosivity using idealized intensity distributions. T ASABE 30(2):379–386

    Article  Google Scholar 

  • Chatterjee N (2020) Soil erosion assessment in a humid, Eastern Himalayan watershed undergoing rapid land use changes, using RUSLE, GIS and high-resolution satellite imagery. MESE 6(1):533–543

    Google Scholar 

  • Chikh HA, Habi M, Morsli B (2019) Influence of vegetation cover on the assessment of erosion and erosive potential in the Isser marly watershed in northwestern Algeria—comparative study of RUSLE and PAP/RAC methods. Arab J Geosci 12(5):1–23

    Article  Google Scholar 

  • Chuma, G. B., Bora, F. S., Ndeko, A. B., Mugumaarhahama, Y., Cirezi, N. C., Mondo, J. M., Bagula, E. M., Karume, K., Mushagalusa, G. N., & Schimtz, S. (2021). Estimation of soil erosion using RUSLE modeling and geospatial tools in a tea production watershed (Chisheke in Walungu), eastern Democratic Republic of Congo. MESE, 1–17.

  • Dahoua, L., Yakovitch, S. V., Hadji, R., & Farid, Z. (2017a). Landslide susceptibility mapping using analytic hierarchy process method in BBA-Bouira Region, case study of East-West Highway, NE Algeria. Euro- EMCEI, 1837–1840.

  • Dahoua, L., Yakovitch, S. V, & Hadji, R. H. (2017b). GIS-based technic for roadside-slope stability assessment: an bivariate approach for A1 East-west highway, North Algeria. J. Min. Sci., 24.

  • De Jong SM (1994) Derivation of vegetative variables from a Landsat TM image for modelling soil erosion. Earth Surf. Process. Landf 19(2):165–178

    Article  Google Scholar 

  • Djoukbala O, Hasbaia M, Benselama O, Mazour M (2019) Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (NW of Algeria). MESE 5(2):725–743

    Google Scholar 

  • Durand Delga, M. (1969). Mise au point sur la structure du Nord-Est de la Berbérie. Publ. Serv. Carte géol. Algérie, NS. Bull. Soc. Géol. Fr, 13(7), 328–337.

  • El Gaatib, R., & Larabi, A. (2014). Integrated evaluation of soil erosion hazard and risk management in the Oued Beht watershed using remote sensing and GIS techniques: impacts on El Kansra Dam Siltation (Morocco). J. Geogr. Inf. Syst, 6(06), 677.

  • El Jazouli A, Barakat A, Ghafiri A, El Moutaki S, Ettaqy A, Khellouk R (2017) Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett 4(1):1–12

    Article  Google Scholar 

  • Farhan, Y., Zregat, D., & Farhan, I. (2013). Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: a case study of Kufranja watershed, Northern Jordan. Water Resour. Prot, 5(12), 1247.

  • Gaubi I, Chaabani A, Mammou AB, Hamza MH (2017) A GIS-based soil erosion prediction using the revised universal soil loss equation (RUSLE)(Lebna watershed, Cap Bon, Tunisia). Nat Hazards 86(1):219–239

    Article  Google Scholar 

  • Gheris, A. (2009). Impact de l’érosion sur l’infrastructure routière de la région de Hammam Tassa, Souk Ahras, Algérie. 10th International Meeting on Soils With Mediterranean Type of Climate.

  • Ghosh A, Maiti R (2021) Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India. Environ. Earth Sci 80(8):1–16

    Article  Google Scholar 

  • Goumrasa A, Guendouz M, Guettouche MS (2021a) GIS-Based Multi-Criteria Decision Analysis Approach (GIS-MCDA) for investigating mass movements’ hazard susceptibility along the first section of the Algerian North-South Highway. Arab J Geosci 14(10):1–17

    Article  Google Scholar 

  • Goumrasa A, Guendouz M, Guettouche MS, Belaroui A (2021b) Flood hazard susceptibility assessment in Chiffa wadi watershed and along the first section of Algeria North–South highway using GIS and AHP method. Appl Geomat. https://doi.org/10.1007/s12518-021-00381-4

  • Guettouche, M.-S. (1991). Cartographie de l’érosion par télédétection satellitaire appliquée à la zone de Médéa, Thèse de magister. Usthb, Alger.

  • Haan, C. T., Barfield, B. J., & Hayes, J. C. (1994). Design hydrology and sedimentology for small catchments. J. Hydrol, (176), 1–4, 10.1016/S0022-1694(96)90037-2

  • Han X, Xiao J, Wang L, Tian S, Liang T, Liu Y (2021) Identification of areas vulnerable to soil erosion and risk assessment of phosphorus transport in a typical watershed in the Loess Plateau. Sci. Total Environ 758:143661

    Article  Google Scholar 

  • Hickey R (2000) Slope angle and slope length solutions for GIS. Cartography 29(1):1–8

    Article  Google Scholar 

  • Hrabalikova M, Janeček M (2017) Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil Water Res 12(2):69–77

    Article  Google Scholar 

  • Israelsen, C. E., Clyde, C. G., Fletcher, J. E., Israelsen, E. K., Haws, F. W., Packer, P. E., & Farmer, E. E. (1980). Erosion control during highway construction--manual on principles and practices. NCHRP Report, 221.

  • Joshi VU (2018) Soil Loss Estimation based on RUSLE along the Central Hunter Valley Region, NSW, Australia. J. Geol. Soc. India 91(5):554–562

    Article  Google Scholar 

  • Kaci M, Habi M, Morsli B (2017) Estimation de l’érosion hydrique par l’application de l’équation universelle de pertes en sol (USLE). Cas du bassin versant non jaugé de l’oued Rhiou,(Bassin de Cheliff) Algérie. Geo-Eco-Trop 41(3):503–518

    Google Scholar 

  • Karaburun A (2010) Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. OJAS 3(1):77–85

    Google Scholar 

  • Kechebour, B. E. L., & Talah, A. (2018). Durability of New Roads: Case Study of the Algerian East West Highway. Int. J Struct. Civ. Eng, Vol. 7, No. 1, pp. 87-91, doi: 10.18178/ijscer.7.1.87-91

  • Khanchoul, K., Balla, F., & Othmani, O. (2020). Assessment Of Soil Erosion By Rusle Model Using Gis : A Case Study Of Chemorah Basin , Algeria. MJG , 02(2), 59–67. https://doi.org/10.26480/mjg.02.2020.

  • Kouli M, Soupios P, Vallianatos F (2009) Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ 57(3):483–497

    Google Scholar 

  • Kulimushi LC, Choudhari P, Mubalama LK, Banswe GT (2021) GIS and remote sensing-based assessment of soil erosion risk using RUSLE model in South-Kivu province, eastern, Democratic Republic of Congo. Geomat Nat Haz Risk 12(1):961–987

    Article  Google Scholar 

  • Liu L, Li ZW, Chang XF, Nie XD, Liu C, Xiao HB, Wang DY (2018) Relationships of the hydraulic flow characteristics with the transport of soil organic carbon and sediment loss in the Loess Plateau. Soil Tillage Res 175:291–301

    Article  Google Scholar 

  • Manyiwa T, Dikinya O (2013) Using universal soil loss equation and soil erodibility factor to assess soil erosion in Tshesebe village, north east Botswana. Afr. J. Agric. Res 8(30):4170–4178

    Google Scholar 

  • Mazour M, Roose E (2002) Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans des bassins versants du Nord-Ouest de 1’ Algérie. Bull Réseau Erosion 21:320–330

    Google Scholar 

  • McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the Universal Soil Loss Equation. T ASABE 30(5):1387–1396

    Article  Google Scholar 

  • McCool DK, Foster GR, Mutchler CK, Meyer LD (1989) Revised slope length factor for the Universal Soil Loss Equation. T ASABE 32(5):1571–1576

    Article  Google Scholar 

  • Meghraoui M, Habi M, Morsli B, Regagba M, Seladji A (2017) Mapping of soil erodibility and assessment of soil losses using the RUSLE model in the Sebaa Chioukh Mountains (northwest of Algeria). J. Water Land Dev 34(1):205–213. https://doi.org/10.1515/jwld-2017-0055

    Article  Google Scholar 

  • Mihi A (2019) Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process , USLE / RUSLE equation , GIS , and remote sensing. Appl Geomat 12:179–191

    Article  Google Scholar 

  • Millward AA, Mersey JE (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38(2):109–129

    Article  Google Scholar 

  • Mitasova H, Hofierka J, Zlocha M, Iverson LR (1996) Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst 10(5):629–641

    Article  Google Scholar 

  • Mitasova H, Neteler M (2004) GRASS as open source free software GIS: accomplishments and perspectives. Trans GIS 8(2):145–154

    Article  Google Scholar 

  • Moges DM, Bhat HG (2017) Integration of geospatial technologies with RUSLE for analysis of land use/cover change impact on soil erosion: case study in Rib watershed, north-western highland Ethiopia. Environ. Earth Sci. 76(22):765

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Sci Soc Am J 50(5):1294–1298

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. JSWC 47(5):423–428

    Google Scholar 

  • Nehaï SA, Guettouche MS (2020) Soil loss estimation using the revised universal soil loss equation and a GIS-based model: a case study of Jijel Wilaya, Algeria. Arab J Geosci 13(4). https://doi.org/10.1007/s12517-020-5160-z

  • Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Tadić MP, Michaelides S, Hrabalíková M, Olsen P (2015) Rainfall erosivity in Europe. Sci. Total Environ. 511:801–814

    Article  Google Scholar 

  • Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci. Total Environ 479:189–200

    Article  Google Scholar 

  • Parveen R, Kumar U (2012) Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin. Jharkhand. J. Geogr. Inf. Syst 4(06):588–596

  • Phinzi K, Ngetar NS, Ebhuoma O (2021) Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South Africa, using RUSLE and random forest algorithm. S. Afr. Geogr. J 103(2):139–162

    Article  Google Scholar 

  • Pilger JD, Machado EL, de Assis Lawisch-Rodriguez A, Zappe AL, Rodriguez-Lopez DA (2020) Environmental impacts and cost overrun derived from adjustments of a road construction project setting. J. Clean. Prod 256:120731

    Article  Google Scholar 

  • Pourghasemi HR, Honarmandnejad F, Rezaei M, Tarazkar MH, Sadhasivam N (2021) Prioritization of water erosion–prone sub-watersheds using three ensemble methods in Qareaghaj catchment, southern Iran. Environ. Sci. Pollut. Res 28:37894–37917. https://doi.org/10.1007/s11356-021-13300-2

    Article  Google Scholar 

  • Pradeep GS, Krishnan MVN, Vijith H (2015) Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arab J Geosci 8(6):3697–3711

    Article  Google Scholar 

  • Prasannakumar V, Shiny R, Geetha N, Vijith H (2011) Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India. Environ. Earth Sci 64(4):965–972

    Article  Google Scholar 

  • Rango, A., & Arnoldus, H. M. J. (1987). Aménagement des bassins versants. Cahiers Techniques de La FAO, 1–11.

  • Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703, 384 pp.

  • Rey F, Ballais J-L, Marre A, Rovera G (2004) Rôle de la végétation dans la protection contre l’érosion hydrique de surface. CR GEOSCI 336(11):991–998

    Article  Google Scholar 

  • Safwan M, Alaa K, Omran A, Quoc BP, Nguyen TTL, Van NT, Duong TA, Endre H (2021) Predicting soil erosion hazard in Lattakia Governorate (W Syria). Int. J. Sediment Res 36(2):207–220

    Article  Google Scholar 

  • Sahli Y, Mokhtari E, Merzouk B, Laignel B, Vial C, Madani K (2019) Mapping surface water erosion potential in the Soummam watershed in Northeast Algeria with RUSLE model. J Mt Sci 16(7):1606–1615. https://doi.org/10.1007/s11629-018-5325-3

    Article  Google Scholar 

  • Sarkar T, Mishra M (2018) Soil erosion susceptibility mapping with the application of logistic regression and artificial neural network. JGSA 2(1):1–17

    Google Scholar 

  • Shafapour Tehrany M, Kumar L, Neamah Jebur M, Shabani F (2019) Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomat Nat Haz Risk 10(1):79–101

    Article  Google Scholar 

  • Sharpley, A. N., & Williams, J. R. (1990). EPIC-Erosion/Productivity Impact Calculator. I: Model Documentation. II: User Manual. Technical Bulletin-United States Department of Agriculture, 1768.

  • Sulistyo B (2016) The effect of choosing three different C factor formulae derived from NDVI on a fully raster-based erosion modelling. IOP Conf Ser Earth Environ Sci 47(1):12030

    Article  Google Scholar 

  • Tahiri M, Tabyaoui H, El Hammichi F, Achab M, Tahiri A, El Hadi H (2017) Quantification de l’érosion hydrique et de la sédimentation à partir de modèles empiriques dans le bassin versant de Tahaddart (Rif nord occidental, Maroc). Bulletin de l’Institut Scientifique, Rabat, Section Sciences de La Terre 39:87–101

    Google Scholar 

  • Takal, K. M., Mittal, S. K., & Sarup, J. (2017). Estimation of soil erosion and net sediment trapped of upper-helmand catchment in Kajaki reservoir using USLE model and remote sensing & GIS technique. j. adv, 4(2), 237056.

  • Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., Hao, F., Guo, W., Chen, L., & Liu, M. (2021). Soil erosion assessment by RUSLE with improved P factor and its validation: case study on mountainous and hilly areas of Hubei Province, China. ISWCR. https://doi.org/10.1016/j.iswcr.2021.04.007

  • Toubal, A. K., Achite, M., Ouillon, S., & Dehni, A. (2018). Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria. Environ. Monit. Assess, 190(4), 210.

  • Toy, T. J., Foster, G. R., & Renard, K. G. (2002). Soil erosion: processes, prediction, measurement, and control. John Wiley & Sons, ISBN: 978-0-471-38369-7, 338 p.

  • Van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. Citeseer. EUR 19022 EN, 52pp.

  • Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk: assessment in Europe. European Soil Bureau, European Commission Brussels. EUR 19044 EN, 34pp.

  • Van Leeuwen, W. J. D., & Sammons, G. (2003). Seasonal land degradation risk assessment for Arizona. Proceedings of the 30th International Symposium on Remote Sensing of Environment, 10–14.

  • Wang G, Wente S, Gertner GZ, Anderson A (2002) Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. Int. J. Remote Sens 23(18):3649–3667

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation (Issue 282). US Department of Agriculture.

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (Issue 537). Department of Agriculture, Science and Education Administration.

  • Xu X, Zhang K, Kong Y, Chen J, Yu B (2006) Effectiveness of erosion control measures along the Qinghai–Tibet highway, Tibetan plateau, China. Transport Res D-TR E 11(4):302–309

    Article  Google Scholar 

  • Yjjou M, Bouabid R, El Hmaidi A, Essahlaoui A, El Abassi M (2014) Modélisation de l’érosion hydrique via les SIG et l’équation universelle des pertes en sol au niveau du bassin versant de l’Oum Er-Rbia. IJES 3(8):83–91

    Google Scholar 

  • Yjjou M, Bouabid R, El Hmaidi A, Essahlaoui A (2012) Caractérisation topographique et climatique via le SIG du bassin versant du haut Oum Er-Rbia en amont du barrage El Hansali (SW du Moyen Atlas, Maroc). J. hydrocarb. mines environ. res 3(2):104–109

    Google Scholar 

  • Zachar, D. (1982). Erosion factors and conditions governing soil erosion and erosion processes. Soil Erosion. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands, 205–388.

  • Zahira, S., Mansour, Z., & Frederic, D. (2017). Cartographie des zones à risque d’érosion hydrique : Application au bassin versant s’oued Fergoug dans les monts des Béni-Chougranes en Algérie. SAGREN, Vol 01, No 1 June, 1–8.

  • Zare M, Samani AAN, Mohammady M, Salmani H, Bazrafshan J (2017) Investigating effects of land use change scenarios on soil erosion using CLUE-s and RUSLE models. IJEST 14(9):1905–1918

    Google Scholar 

  • Zini, A., Sciortino, M., Peloso, A., Verrubbi, V., & Grauso, S. (2018). Estimating the C-factor of USLE/RUSLE by means of NDVI time-series in Southern Latium. An improved correlation model, ENEA, ISSN: 0393-3016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeldjalil Goumrasa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

This article is part of the Topical Collection on Current Advances in Geology of North Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goumrasa, A., Guendouz, M., Guettouche, M.S. et al. Spatial assessment of water erosion hazard in Chiffa wadi watershed and along the first section of the Algerian North-South highway using remote sensing data, RUSLE, and GIS techniques. Arab J Geosci 14, 2152 (2021). https://doi.org/10.1007/s12517-021-08377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08377-5

Keywords

Navigation