Skip to main content

Advertisement

Log in

Flow accumulation based method for the identification of erosion risk points in unpaved roads

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The unsuitable construction of unpaved roads has been causing problems related to the formation of erosive processes, sediments in watersheds, bogs, flooding, and holes. Presuming that the areas where flow accumulation intersects unpaved roads represent risk points, our objectives are (1) to develop a qualitative method based on the GIS software management tool (FlowAccRoad) for the identification of the intersection points between flow accumulation and roads and (2) to verify the discrepancy between the points of intersection produced by digital elevation models (DEM) accounting for different spatial resolutions. In the GIS environment, we used the Shuttle Radar Topography Mission (SRTM) and Goiania (GOI) digital elevation models for the modeling of flow accumulation and vectorization of the unpaved roads, both of which are based on the Bandeira Stream Watershed in Goiania, Goiás, Brazil. This highlights that 54 points of intersection between the flow accumulation and unpaved roads present problems related to erosive processes and quagmires, among others. The FlowAccRoad method identified the principal critical points observed in the field, using both the DEM of 30.4 m of spatial resolution (SRTM) and also of 4.8 m of spatial resolution (GOI). From the FlowAccRoad method, we observed that 91% of the risk points identified through the GOI DEM were located less than 20 m from valid points in the field by using GPS. Analyzing the SRTM DEM, only 45% of the critical risk points identified by the method were located less than 20 m from valid points in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alder, S., Prasuhn, V., Liniguer, H., Lerweg, K., Hurni, H., Candinas, A., & Gujer, H. U. (2015). A high-resolution map of direct and indirect connectivity of erosion risk areas to surface waters in Switzerland - a risk assessment tool for planning and policy-making. Land Use Policy, 44, 236–249.

    Article  Google Scholar 

  • Baesso, D. P., & Gonçalves, F. L. R. (2003). Estradas rurais: técnicas adequadas de manutenção. Florianópolis: DER.

    Google Scholar 

  • Cao, L., Zhang, K., & Liang, Y. (2014). Factors affecting rill erosion of unpaved loess roads in China. Earth Surface Processes and Landforms, 39(13), 1812–1821.

    Article  Google Scholar 

  • CNT – Confederação Nacional do Transporte. (2017). Pesquisa CNT de rodovias 2017: relatório gerencial. Brasília: CNT, SEST, SENAT.

  • Cunha, M. C., Thomaz, E. L., & Vestena, L. R. (2013). Erosion control measures of rural roads in the Rio das Pedras basin, Guarapuava, Paraná (Brazil). Sociedade & Natureza, 25(1), 107–118.

    Article  Google Scholar 

  • DNIT - Departamento Nacional de Infra-Estrutura de Transportes. (2005). Manual de Conservação Rodoviária. Rio de Janeiro: DNIT.

    Google Scholar 

  • DNIT - Departamento Nacional de Infra-Estrutura de Transportes. (2007). Terminologias rodoviárias usualmente utilizadas, versão 1.1. Brasília: Diretoria de Planejamento e Pesquisa Coordenação Geral de Planejamento e Programação de Investimentos.

    Google Scholar 

  • Donald, A. M., & Macdonald, L. H. (1998). Modelling road surface sediment production using a vector geographic information system. Earth Surface Processes and Landforms, 23, 95–107.

    Article  Google Scholar 

  • Enriquez, A. G., Silva, D. P., Pruski, F. F., Griebeler, N. P., & Cecon, P. R. (2015). Erodibilidade e tensão crítica de cisalhamento no canal de drenagem de estrada rural não pavimentada. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(2), 160–165.

    Article  Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, RG 2004.

    Article  Google Scholar 

  • Fu, B., Newhan, L. T. H., & Ramos-Scharrón, C. E. (2010). A review of surface erosion and sediment delivery models for unsealed roads. Environmental Modelling & Software, 25(1), 1–14.

    Article  CAS  Google Scholar 

  • Griebeler, N. P., Pruski, F. F., Silva, J. M. A., Ramos, M. M., & Silva, D. D. (2005). Modelo para a determinação do espaçamento entre desaguadouros em estradas não pavimentadas. Revista Brasileira de Ciência do Solo, 29(3), 397–405.

    Article  Google Scholar 

  • Griebeler, N. P., Pruski, F. F., & Silva, J. M. A. (2009). Controle de Erosão em Estradas Não Pavimentadas. In F. F. Pruski (Ed.), Conservação de Solo e Água: práticas mecânicas para o controle da erosão hídrica (pp. 166–215). Viçosa: Editora UFV.

    Google Scholar 

  • GOOGLE, INC. (2017). Google Satellite Images. Avaliable in QuickMapServices QGIS Plugin. Accessed October 2017.

  • Jaafari, A., Najafi, A., Rezaeian, J., & Sattarian, A. (2015). Modeling erosion and sediment delivery from unpaved roads in the north mountainous forest of Iran. International Journal on Geomathematics, 6(2), 343–356.

    Article  Google Scholar 

  • Jackson, S. L. (2015). Dusty roads and disconnections: Perceptions of dust from unpaved mining roads in Mongolia’s South Gobi province. Geoforum, 66, 94–105.

    Article  Google Scholar 

  • Jenson, S. K., & Dominque, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593–1600.

    Google Scholar 

  • Jones, J. A., Swanson, F. J., Wemple, B. C., & Snyder, K. U. (2000). Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conservation Biology, 14(1), 76–85.

    Article  Google Scholar 

  • Junior, P. F., & Thomaz, E. L. (2018). Land-use changes and the increase in the number road-stream crossings in a rural basin south of Brazil. Revista Brasileira de Geomorfologia, 19, 739–755.

    Google Scholar 

  • Lotfalian, M., Babadi, T. Y., & Akbari, H. (2019). Impacts of soil stabilization treatments on reducing soil loss and runoff in cut-slope of forest roads in Hyrcanian forests. Catena, 172, 158–162.

    Article  Google Scholar 

  • MICROSOFT. (2017). Bing Satellite aerial imagery. Avaliable in QuickMapServices QGIS Plugin. Accessed October 2017.

  • O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323–344.

    Article  Google Scholar 

  • Oliveira, L. C., Bertol, I., Barbosa, F. T., Campos, M. L., & Junior, J. M. (2015). Perdas de solo, água e nutrientes por erosão hídrica em uma estrada florestal na serra catarinense. Ciência Florestal, 25(3), 655–665.

    Article  Google Scholar 

  • Ramos-Scharrón, C. E. (2018). Land disturbance effects of roads in runoff and sediment production on dry-tropical settings. Geoderma, 310, 107–119.

    Article  Google Scholar 

  • Ramos-Scharrón, C. E., & Lafevor, M. C. (2016). The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. Journal of Hydrology, 533, 168–179.

    Article  Google Scholar 

  • Ramos-Scharrón, C. E., & MacDonald, L. H. (2007a). Measurement and prediction of natural and anthropogenic sediment sources, St. John, U.S. Virgin Islands. Catena, 71, 250–266.

    Article  Google Scholar 

  • Ramos-Scharrón, C. E., & Macdonald, L. H. (2007b). Development and application of a GIS-based sediment budget model. Journal of Environmental Management, 84, 157–172.

    Article  Google Scholar 

  • Samiksha, S. S., Raman, R. S., Nirmalkar, J., Kumar, S., & Sirvaiya, R. (2017). PM10 and PM2.5 chemical source profiles with optical attenuation and health risk indicators of paved and unpaved road dust in Bhopal, India. Environmental Pollution, 222, 477–485.

    Article  CAS  Google Scholar 

  • Santos, A. R., Pastore, E. L., Augusto Junior, F. F., & Cunha, M. A. (1985). Estradas vicinais de terra: manual técnico para conservação e recuperação. Sao Paulo: Instituto de Pesquisas Tecnológicas.

    Google Scholar 

  • Sosa-Pérez, G., & Macdonald, L. H. (2017a). Effects of closed roads, traffic, and road decommissioning on infiltration and sediment production: a comparative study using rainfall simulations. Catena, 159, 93–105.

    Article  Google Scholar 

  • Sosa-Pérez, G., & Macdonald, L. H. (2017b). Reductions in road sediment production and road-stream connectivity from two decommissioning treatments. Forest Ecology and Management, 398, 116–129.

    Article  Google Scholar 

  • Tarimo, M., Wondimu, P., Odeck, J., Lohne, J., & Laedre, O. (2017). Sustainable roads in Serengeti National Park: gravel roads construction and maintenance. Procedia Computer Science, 121, 329–336.

    Article  Google Scholar 

  • Thomaz, E. L., & Peretto, G. T. (2016). Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics. Science of the Total Environment, 550(15), 547–555.

    Article  CAS  Google Scholar 

  • Tiecher, T., Ramon, R., Laceby, J. P., Evrard, O., & Minella, J. P. G. (2019). Potential of phosphorus fractions to trace sediment sources in a rural catchment of Southern Brazil: comparison with the conventional approach based on elemental geochemistry. Geoderma, 337, 1067–1076.

    Article  CAS  Google Scholar 

  • Vuillez, C., Tonini, M., Sudmeier-Rieux, K., Devkotac, S., Derron, M. H., & Jaboyedoff, M. (2018). Land use changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016. Applied Geography, 94, 30–40.

    Article  Google Scholar 

  • Zhang, J. X., Chang, K., & Wu, J. Q. (2008). Effects of DEM resolution and source on soil erosion modelling: a case study using the WEPP model. International Journal of Geographical Information Science, 22(8), 925–942.

    Article  Google Scholar 

  • Zhang, Z., Liu, S., Dong, S., Fu, W., & Cui, B. (2009). Spatio temporal analysis of different levels of road expansion on soil erosion distribution: a case study of Fengquing county, Southwest China. Frontiers of Earth Science in China, 3, 389–396.

    Article  Google Scholar 

  • Zoccal, J. C. (2007). Soluções cadernos de estudos em conservação do solo e água: Adequação de erosões: causas, consequências e controle da erosão rural. Presidente Prudente: Companhia de Desenvolvimento Agrícola de São Paulo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rherison Tyrone Silva Almeida.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

The model builder for the FlowAccRoad method is available for download as supplementary material. (RAR 9 kb)

Appendix 1

Appendix 1

Fig. 13
figure 13

Flowchart of the FlowAccRoad model builder corresponding to the conversion of risk raster to erosion risk points related to unpaved roads

Fig. 14
figure 14

Interface of the model builder related to the conversion of risk raster to erosion risk points of the FlowAccRoad model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, R.T., Griebeler, N.P., de Oliveira, M.W.R. et al. Flow accumulation based method for the identification of erosion risk points in unpaved roads. Environ Monit Assess 191, 758 (2019). https://doi.org/10.1007/s10661-019-7949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7949-3

Keywords

Navigation