Skip to main content

Advertisement

Log in

Heat flow analyses over Bornu Basin and its environs, Northeast Nigeria, using airborne magnetic and radiometric data: implication for geothermal energy prospecting

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The study presents the results of the analyses of heat flow for geothermal energy exploration on a reconnaissance basis within the Bornu Basin and its environs using an airborne magnetic and radiometric data set. The study area is bounded with latitude 11.00–13.00°N and longitude 11.00–14.00°E with an estimated total area of 72,600 km2. The residual of the total magnetic field of the study area was subdivided into seventy-one (71) overlapping spectral blocks of 55 × 55 and 110 × 110 km2 windows. Spectral analysis by fast Fourier transform was performed on each overlapping block, and centroid depth and depth to the top of the magnetic source were obtained from the plots of the log of energy against wave number. The results showed that the centroid depth for the two windows ranges from 6.28 to 17.70 km and 7.83 km to 23.50 km, respectively. Similarly, the depth to the top of the magnetic source for the two windows also ranges from 1.66 to 6.12 km and 2.27 km to 6.37 km. The Curie point depth obtained for the two windows ranges from 8.78 to 32.69 km and 10 km to 42 km, respectively. The heat flow obtained using an average thermal conductivity of 2.54 Wm−1°C−1 ranges from 55.36 to 161.18 mWm−2 and 34.30 to 126 mWm−2 for the two windows, respectively. The maximum heat flow of 80 to 100 mWm−2 indicates that a geothermal potential source was found at the southeastern part of the study area corresponding to Gwoza and Galdekore. The results of radiogenic heat flow (RHP) range from 0.80 to 2.47 μWm−3. The maximum RHP of 2.2 to approximately 2.5 μWm−3 is considered as radiometric signatures signifying probable geothermal potential sources, which could be found at the southeastern part of the study area corresponding to Gwoza and Galdekore. The agreement between the two heat flows obtained from the analysis of airborne magnetic and radiometric data sets is an indicator that the southeastern part of the study area is a viable source for potential geothermal energy exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8

Similar content being viewed by others

References

  • Abraham EM, Lawal KM, Ekwe AC, Alile O, Murana KA, Lawal AA (2014) Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring-Ekiti State, southwestern Nigeria. Geothermal Energy 2(1):6

    Article  Google Scholar 

  • Ademila O, Okpoli CC, Ehinmitan D, (2019) Geological and lithological mapping of part of Igarra schist belt using integrated geophysical methods. Earth Sciences Pakistan (ESP), Zibeline International Publishing, vol. 3(1), pages 1-9

  • Ademila O (2018) Integrated geophysical methods for subsurface characterisation and health hazard assessment in parts of southwestern basement Nigeria. 2nd International Conference on Science and Sustainable Development, IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/173/1/012024

  • Adepelumi AA, Falade AH (2017) Combined high-resolution aeromagnetic and radiometric mapping of uranium mineralization and tectonic settings in Northeastern Nigeria. Acta Geophysica 65(5):1043–1068

    Article  Google Scholar 

  • Aderoju AB, Ojo SB, Adepelumi AA, Edino F (2016) A reassessment of hydrocarbon prospectivity of the Chad Basin, Nigeria, using magnetic hydrocarbon indicators from high resolution aeromagnetic imaging, Ife J Sci 18(2)

  • Airo ML (2007) Application of aerogeophysical data for gold exploration: implications for the Central Lapland greenstone belt. Geol Surv Finland Spec Pap 44:187–208

    Google Scholar 

  • Akiishi M, Isikwue BC, Tyovenda AA (2018) Determination of geothermal energy sources in Masu area northeastern Nigeria using spectral analysis of aeromagnetic data. Int J Energy Environ Sci 3(5):89

    Article  Google Scholar 

  • Alistair TM, Thomas LH, Paul LY, David CW, Alan JC (2014) Gamma-ray spectrometry in geothermal exploration: state of the art techniques. Energies 2014(7):4757–4780. https://doi.org/10.3390/en7084757

    Article  Google Scholar 

  • Anderson H, Nash C (1997) Integrated lithostructural mapping of the Rössing area, Namibia using high resolution aeromagnetic, radiometric, Landsat data and aerial photographs. Explor Geophys 28(2):185–191

    Article  Google Scholar 

  • Appiah D (2015) Aeromagnetic and airborne radiometric data interpretation on Chirano area of the Sefwi gold belt, Department of Physics, Kwane Nkrumah University of Science and Technology. (M.Sc. dissertation)

  • Bansal AR, Dimri VP (2010) Scaling spectral analysis: a new tool for interpretation of gravity and magnetic data. e-J Earth Sci India 3(1):54–68

    Google Scholar 

  • Bansal AR, Gabriel G, Dimri VP, Krawczyk CM (2011) Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76(3):L11–L22

    Article  Google Scholar 

  • Bassey NE, Barka J (2015) Lithologic and structural mapping using aeromagnetic and ground radiometric data in Song area, NE Nigeria. J Geogr Environ Earth Sci Int 2(4):173–179

    Google Scholar 

  • Bektaş Ö, Ravat D, Büyüksaraç A, Bilim F, Ateş A (2007) Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl Geophys 164(5):975–998

    Article  Google Scholar 

  • Benkhelil J (1989) The origin and evolution of the Cretaceous Benue Trough (Nigeria). J Afr Earth Sci (and the Middle East) 8(2-4):251–282

    Article  Google Scholar 

  • Bhattacharyya BK, Leu LK (1975) Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J Geophys Res 80:4461–4465

    Article  Google Scholar 

  • Bhattacharyya BK, Leu LK (1977) Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics 42:41–50

    Article  Google Scholar 

  • Bird DE (1997) Primer: interpreting magnetic data. Am Assoc Pet Geol Explorer 8(5):18–21

    Google Scholar 

  • Blakeley RJ (1988) Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. J Geophys Res 93:817–832

    Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Čermák V, Rybach L (1982) Thermal conductivity and specific heat of minerals and rocks. In: G Angenheister (ed.), Landolt-Börnstein: numerical data and functional relationships in science and technology, new series, Group V (Geophysics and Space Research), vol Ia, (Physical Properties of Rocks) (pp. 305-343). Springer, Berlin-Heidelberg

  • Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48(3):376–390

    Article  Google Scholar 

  • Dieokuma T, Gu HM, Uko ED (2013) Preliminary estimation of thermal conductivity in Bornu-Chad Basin, Nigeria. Eur Sci J 9(30)

  • Dimgba BC, Obiora DN, Abangwu JU, Ugbor DO (2020) Study of Curie point depth and heat flow from spectral analysis of aeromagnetic data for geothermal potential of Gubio, Chad Basin, Nigeria. SN Appl Sci 2(8):1–9

    Article  Google Scholar 

  • Ejepu JS, Ako TA, Abdullahi S (2018) Integrated geosciences prospecting for gold mineralization in Kwakuti, North-Central Nigeria. J Geol Min Res 10(7):81–94

    Article  Google Scholar 

  • Elkhateeb SO, Abdellatif AG (2018) Delineation potential gold mineralisation zones in part of central Eastern Desert, Egypt using airborne magnetic and radiometric data. NRIAG J Astron Geophys 7(2):361–376

    Article  Google Scholar 

  • Ercan ÖA, Şeren A, Elmas A (2014) Gold and silver prospection using magnetic, radiometry and microgravity methods in the Kışladağ Province of Western Turkey. Resour Geol 64(1):25–34

    Article  Google Scholar 

  • Eze MO, Mamah LI, Madu AJC, Onuba L (2017) Geological and structural interpretation of possible mineralization zones of part of Anambra Basin and southern Benue trough using airborne geophysical data. Int J Res Eng Appl Sci (IJREAS) Issues 5(7):70–80

    Google Scholar 

  • Goossens MA (1993) Integrated analysis of Landsat TM, airborne magnetic, and radiometric data, as an exploration tool for granite-related mineralization, Salamanca province, Western Spain. Nonrenew Resour 2(1):14–30

    Article  Google Scholar 

  • Genik GJ (1992) Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics 213:169–185

    Article  Google Scholar 

  • Haack U (1982) Radioactivity of rocks. In: Hellwege K (Ed.), Landolt-Bo¨rnstein numerical data and functional relationships in science and technology. New Series, Group V. Geophysics and Space Research, vol. 1, Physical properties of rocks, supvolume b (pp. 433–481). Springer-Verlag: New York

  • IAEA (International Atomic Energy Agency) (2003) Guidelines for radioelement mapping using gamma ray spectrometry data, Vienna

  • Irumhe PE, Obiadi II, Obiadi CM, Ezenwaka CK, Mgbolu CC (2019) Estimating sedimentary pile thickness, structural lineaments and heat flow in parts of North Central Nigeria from aeromagnetic data. Solid Earth Sci 4(3):92–101

    Article  Google Scholar 

  • Jessop AM, Lewis TJ, Judge AS, Taylor AE, Drury MJ (1984) Terrestrial heat flow in Canada. Tectonophysics 103(1-4):239–261

    Article  Google Scholar 

  • Joly J (1909) Radioactivity and geology: an account of the influence of radioactive energy on terrestrial history. A. Constable & Company, Limited

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Blackwell Science Ltd., London

    Google Scholar 

  • Kwaya MY, Kurowska E, Arabi AS (2016) Geothermal gradient and heat flow in the Nigeria sector of the Chad Basin, Nigeria. Computational Water Energy Environ Eng 5(02):70

    Article  Google Scholar 

  • Lawal TO (2020) Integrated aeromagnetic and aeroradiometric data for delineating lithologies, structures, and hydrothermal alteration zones in part of southwestern Nigeria. Arab J Geosci 13(16):1–19

    Article  Google Scholar 

  • Lawal TO, Nwankwo LI (2017) Evaluation of the depth to the bottom of magnetic sources and heat flow from high resolution aeromagnetic (HRAM) data of part of Nigeria sector of Chad Basin. Arab J Geosci 10(17):1–2

    Article  Google Scholar 

  • Maden N (2010) Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central TURKEY). Pure Appl Geophys 167(3):349–358

    Article  Google Scholar 

  • Mayhew MA (1982) Application of satellite magnetic anomaly data to Curie isotherm mapping. J Geophys Res 87:4846–4854

    Article  Google Scholar 

  • Mayhew MA (1985) Curie isotherm surfaces inferred from high-altitude magnetic anomaly data. J Geophys Res 90:2647–2654

    Article  Google Scholar 

  • NGSA (Nigerian Geological Survey Agency) (2005) Newsletter, volume 2

  • Nwankwo LI, Shehu AT (2015) Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria. J Volcanol Geotherm Res 305:45–55

    Article  Google Scholar 

  • Nwankwo NC, Anthony AS, Nwosu LI (2009) Estimation of the heat flow variation in the Chad Basin Nigeria. J Appl Sci Environ Manag 13(1)

  • Nwankwo C, Ekine A (2009) Geothermal gradients in the Chad Basin, Nigeria, from bottom hole temperature logs. Int J Physical Sci 4(12):777–783

    Google Scholar 

  • Obaje NG (2009) Geology and mineral resources of Nigeria. Lecture Notes in Earth Sciences. Springer, Heidelberg

    Book  Google Scholar 

  • Okeyode IC, Olurin OT, Ganiyu SA, Olowofela JA (2019) High resolution airborne radiometric and magnetic studies of Ilesha and its environs, southwestern Nigeria. Mater Geoenviron 66(1):51–73

    Article  Google Scholar 

  • Okosun EA (1992) Cretaceous ostracod biostratigraphy from Chad Basin in Nigeria. J Afr Earth Sci 14(3):327–339

    Article  Google Scholar 

  • Okosun EA (1995) Review of geology of Bornu Basin. J Min Geol 31(2):113–172

    Google Scholar 

  • Okpoli C, Akingboye A (2016) Reconstruction and appraisal of Akunu–Akoko area iron ore deposits using geological and magnetic approaches. Mater Geoenviron 63(1):19–38

    Article  Google Scholar 

  • Okubo Y, Graf RJ, Hansent RO, Ogawa K, Tsu H (1985) Curie point depths of the island of Kyushu and surrounding areas Japan. Geophysics 53:481–494

    Article  Google Scholar 

  • Okubo Y, Matsunaga T (1994) Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. J Geophys Res Solid Earth 99(B11):22363–22371

    Article  Google Scholar 

  • Okubo Y, Tsu H, Ogawa K (1989) Estimation of Curie point temperature and geothermal structure of island arcs of Japan. Tectonophysics 159(3-4):279–290

    Article  Google Scholar 

  • Okubo Y, Makino M, Kasuga S (1991) Magnetic model of the subduction zone in the northeast Japan Arc. Tectonophysics 192(1-2):103–115

    Article  Google Scholar 

  • Okubo Y, Matsushima J, Correia A (2003) Magnetic spectral analysis in Portugal and its adjacent seas. Physics Chem Earth, Parts A/B/C 28(9-11):511–519

    Article  Google Scholar 

  • Olabode SO, Adekoya JA, Ola PS (2015) Distribution of sedimentary formations in the Bornu Basin, Nigeria. Pet Explor Dev 42(5):674–682

    Article  Google Scholar 

  • Olugbemiro RO, Ligouis B, Abaa SI (1997) The Cretaceous series in the Chad Basin, NE Nigeria: source rock potential and thermal maturity. J Pet Geol 20:51–68

    Article  Google Scholar 

  • Paoletti V, Pinto A (2005) Aeromagnetic and radiometric data localized filtering at the Vesuvian volcanic area. Boll Geofis Teor Appl 46(2-3):245–259

    Google Scholar 

  • Pereira LCL, Santos LC, Carrino TA (2019) The role of airborne geophysics in the investigation of gold occurrences in the Itapetim Region, Borborema Province, Northeast Brazil. Braz J Geol 49(3)

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38(3-4):279–296

    Article  Google Scholar 

  • Reynolds JM (2011) An introduction to applied and environmental geophysics. John Wiley & Ltd. Bans Lane, Chichester, pp 124–132

    Google Scholar 

  • Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71(5):L51–L59

    Article  Google Scholar 

  • Roque A, Ribeiro FB (1997) Radioactivity and radiogenic heat production in the sediments of the São Francisco sedimentary basin, Central Brazil. Appl Radiat Isot 48(3):413–422

    Article  Google Scholar 

  • Rybach L, Buntebarth G (1981) Heat-generating radioelements in granitic magmas. J Volcanol Geotherm Res 10(4):395–404

    Article  Google Scholar 

  • Rybach L (1986) Amount and significance of radioactive heat sources in sediments. In: Thermal Modeling in Sedimentary Basins: 1st IFP Exploration Research Conference, Carcans, France, (Vol. 44, p. 311). Editions Technip

  • Rybach L (1988) Determination of heat production rate. In: Haenel R, Rybach L, Stegena L (eds) Handbook of Terrestrial Heat-Flow Density Determination. Kluwer Academic Publishers, Dordrecht, pp 125–142

    Google Scholar 

  • Salem A, Ushijima K, Elsiraft A, Mizunga H (2000) Spectral analysis of aeromagnetic data for geothermal reconnaissance of Quseir area, northern Red Sea, Egypt. Proceedings of the world geothermal congress: 1669-1674

  • Salem A, Green C, Ravat D, Singh KH, East P, Fairhead JD, Biegert E (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624:75–86

    Article  Google Scholar 

  • Shirani S, Kalateh AN, Noorollahi Y (2020) Curie point depth estimations for northwest Iran through spectral analysis of aeromagnetic data for geothermal resources exploration. Nat Resour Res 29(4):2307–2332

    Article  Google Scholar 

  • Siagian ISJ, Nasution BS, Widijono B, Setyanta A, Nurmaliah MK, Adrian N (2013) Airborne magnetic and radiometric geophysical mapping in South and Central Range Mountains, Papua Indonesia. ASEG Extended Abstracts 2013(1):1–4. https://doi.org/10.1071/ASEG2013ab371

    Article  Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Stampolidis A, Kane I, Tsokas GN, Tsourlos P (2005) Curie point depths of Albania inferred from ground total field magnetic data. Surv Geophys 26(4):461–480

    Article  Google Scholar 

  • Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470

    Article  Google Scholar 

  • Tsokas GN, Hansen RO, Fytikas M (1998) Curie point depth of the island of Crete (Greece). Pure Appl Geophys 152(4):747–757

    Article  Google Scholar 

  • Vacquier V (1998) A theory of the origin of the Earth’s internal heat. Tectonophysics 291(1-4):1–7

    Article  Google Scholar 

  • Vilà M, Fernández M, Jiménez-Munt I (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modelling. Tectonophysics 490(3-4):152–164

    Article  Google Scholar 

Download references

Funding

The authors appreciated and thanked the management of the Tertiary Education Trust Fund (TETFund) for the provision of fund for this research through the Federal University of Lafia, Nasarawa State, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiwo Adewumi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewumi, T., Salako, K.A., Usman, A.D. et al. Heat flow analyses over Bornu Basin and its environs, Northeast Nigeria, using airborne magnetic and radiometric data: implication for geothermal energy prospecting. Arab J Geosci 14, 1355 (2021). https://doi.org/10.1007/s12517-021-07370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07370-2

Keywords

Navigation