Skip to main content

Advertisement

Log in

An assessment of rainfall variability in northern Egypt

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The aim of the current study is to monitor and analyze the rainfall variability and to predict the aridity in northern Egypt. To implement that, parametric and non-parametric statistical methods were used for the rainfall data at 13 meteorological stations scattered along the study area from 1947 to 2010. Standard normal homogeneity test, linear regression forecasting methods, Mann-Kendall’s test for trend, time-series plots, the trend-to-noise ratio as a test of significance for the annual and seasonal rainfall, the annual rainfall intensity, inter- and intra-annual variability, and seasonality were calculated. High inter-annual and intra-annual rainfall variability has been observed over space and time. Synchronously, different temporal patterns of annual rainfall were noticed at different stations, and most of the trends were not linear and significant. The results indicated an increase in the number of years, which receive less than the average rainfall. In addition, a marked variation in seasonal rainfall was observed every decade, and the rainfall variability of autumn was higher than that in winter and spring while summer experienced no rainfall and, hence, no variability. In the future, precipitation will decrease overall the region with an increase in temperature for all stations, where the existence of droughts may possibly arise in northern Egypt based on the ensemble mean of multi-Coordinated Regional climate Downscaling Experiment models under RCP4.5 and RCP8.5 emission scenarios. The outcomes of this research can be beneficial for drought hazard mitigation as well as for the preparation and managing agricultural activities in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. High RI value (closer to 3): heavy rainfall event over time. Medium RI value (approximately = 0): normal rainfall event. Low RI value (closer to −3): low rainfall event over the period specified drought Van Rooy (1965).

References

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139:3887–3905

    Article  Google Scholar 

  • Batanouny KH (2001) Conservation and sustainable use of biological resources in the North-Western Desert of Egypt with the involvement of the local population, North Africa Programme Biodiversity Conservation. IUCN and Technology, Egypt and The World Conservation Union

  • Batisani N, Yarnal B (2010) Rainfall variability and trends in semi-arid Botswana: implications for climate change adaptation policy. Appl Geogr 30(4):483–489

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system mode, MorESM1-M - part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720

    Article  Google Scholar 

  • CCCMA, 2017. Second generation Canadian earth system model [Online]. Government of Canada. Canadian Centre for Climate mod. Available: http://www.ec.gc.ca/ccmaccccma/default.asp?lang=En&xml=1A3B7DF1-99BB-4EC8-B129-09F83E72D645,

  • Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Katelsen, K., Hebestadt, I.,Rinke, A., 2007. Technical report 06-17. The HIRHAM regional climate model version 5 (β). Copenhagen

  • Corte-Real J, Qian B, Xu H (1998) Regional climate change in Portugal: precipitation variability associated with large-scale atmospheric circulation. Int J Climatol: J Royal Meteorologic Soc 18(6):619–635

    Article  Google Scholar 

  • Coscarelli ROBERTO, Gaudio ROBERTO, Caloiero T (2004) Climatic trends: an investigation for a Calabrian basin (southern Italy). IAHS Publ 286:255–266

    Google Scholar 

  • Costa JA, Rodrigues GP (2017) Space-time distribution of rainfall anomaly index (RAI) for the Salgado Basin, Ceará State-Brazil. Ciência e Natura 39(3):627–634

    Article  Google Scholar 

  • De Luıs M, Raventós J, González-Hidalgo JC, Sánchez JR, Cortina J (2000) Spatial analysis of rainfall trends in the region of Valencia (East Spain). Int J Climatol 20(12):1451–1469

    Article  Google Scholar 

  • De Martonne E (1926) Aerisme, et índices d’aridite. Compt L’Acad Sci 182:1395–1398

    Google Scholar 

  • Diaz HF, Bradley RS, Eischeid JK (1989) Precipitation fluctuations over global land areas since the late 1800s. J Geophys Res-Atmos 94(D1):1195–1210

    Article  Google Scholar 

  • Domroes M (1996) Rainfall variability over Sri Lanka. In: Yash PA, Suloclana G, Govind BP (eds) 1996: climate variability and agriculture. Narosa Publishing House, New Delhi, pp 163–179 Egyptian Meteorological Authority, Unpublished data, Cairo (1947-2006)

    Google Scholar 

  • Domroes M, El-Tantawi AM (2005) Recent temporal and spatial temperature changes in Egypt. Int J Clim 25(1):51–63

  • Dosio A, Panitz H, SchubertFrisius M, Lũthi D (2015) Dynamical downscaling of CMIP5 global circulation models over CORDEX Africa with COSMOCLM: evaluation over the present climate and analysis of the added value. Clim Dyn 44:2637–2661. https://doi.org/10.1007/s00,382-014-2262-x

    Article  Google Scholar 

  • Dufresne J-L, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Article  Google Scholar 

  • Dunne JP et al (2012) GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Article  Google Scholar 

  • Dunne JP et al (2013) GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267

    Article  Google Scholar 

  • El-Raey M, Dewidar KR, El-Hattab M (1999) Adaptation to the impacts of sea level rise in Egypt. Mitig Adapt Strateg Glob Chang 4(3):343–361

    Article  Google Scholar 

  • El-Tantawi AM, Bao A, Liu Y, Gamal G (2021) Assessment of meteorological drought in North-Western Egypt using rainfall deciles, standardized precipitation index and reconnaissance drought index. Disast Adv 14:1–14

    Google Scholar 

  • Gamal G (2017) Future analysis of extreme temperature indices for Sinai peninsula-Egypt. Imper J Interdiscipl Res (IJIR) 3:1960–1966

    Google Scholar 

  • Gamal, G. (2019), Historical and future extreme temperature indices of Greater Cairo region, Egypt, Bulletin of Egyptian Geographical Society, Vol 92, TomXII, P 40:52, Egyptian Geographical Society

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol organ bull 58:175–183. Available online at http:// wcrp.ipsl.jussieu.fr/RCD_Projects/CORDEX/CORDEX_giorgi_WMO.pdf

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2–3):90–104

    Article  Google Scholar 

  • Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol: J Royal Meteorologic Soc 22(13):1593–1615

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Ştefănescu S, Bintanja R, Sterl A et al (2012) EC-Earth V2. 2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629

    Article  Google Scholar 

  • Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys Res Lett 25(17):3379–3382

    Article  Google Scholar 

  • Igri PM, Tanessong RS, Vondou DA, Kamga FM, Panda J (2015) Added-value of 3DVAR data assimilation in the simulation of heavy rainfall events over West and Central Africa. Pure Appl Geophys 172:2751–2776. https://doi.org/10.1007/s00,024-015-1052-7

    Article  Google Scholar 

  • IPCC, 2001. Climate change 2001 the scientific basis, summary for policymakers. A report of working group I of the intergovernmental panel on climate change, http://www.unep.ch/ipcc/pub/spm22-01.pdf (2.4.2001)

  • Ismael H., El-Kayali M., 2015. The climate and its impacts on Egyptian cultural heritage: EI-Nadora temple in El-Kharga Oasis, Western Desert of Egypt, as a case study, International Geographical Union (IGU) Regional Conference in Moscow, 17-21 August 2015

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3:181–199

    Article  Google Scholar 

  • Jeffrey S, Rotstayn L, Collier M, Dravitzki S, Hamalainen C, Moeseneder C, Wong K, Syktus J (2013) Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust Meteorol Oceanogr J 63:1–13

    Article  Google Scholar 

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX. An international downscaling link to CMIP5. CLIVAR Exch 56:34–40

    Google Scholar 

  • Kininmonth, W. R. 1999. The 1997/1998 El Nino event: scientific and technical initiatives, WMO Bulletin, 48: 3, July 1999, Geneva

  • Klutse NAB, Sylla MB, Diallo I, Sarr A, Dosio A, Diedhiou A, Kamga A, Lamptey B, Ali A, Gbobaniyi EO, Owusu K, Lennard C, Hewitson B, Nikulin G, Panitz HJ, Büchner M (2016) Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor Appl Climatol 123:369–386. https://doi.org/10.1007/s00,704-014-1352-3

    Article  Google Scholar 

  • Laprise R, Hernández-Díaz L, Kossivi T, Sushama L, Separović L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian regional climate model (CRCM5). Clim Dyn 41:3219–3246

    Article  Google Scholar 

  • Lotfy WM (2014) Climate change and epidemiology of human parasitosis in Egypt: a review. J Adv Res 5(6):607–613

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E (2003) 500-year winter temperature and precipitationvariability over the Mediterranean area and its connection to the large-scale atmospheric circulation. In: Bolle HJ (ed) Mediterranean climate variability and trends. Springer, Berlin and Heidelberg, pp 133–153

    Chapter  Google Scholar 

  • Mahmoud D, Gamal G, El-Seoud TA (2019) The potential impact of climate change on Hurghada city, Egypt, using tourism climate index. GeoJ Tour Geosites 25(2):496–508

    Article  Google Scholar 

  • Mamtimin B, Et-Tantawi AMM, Schaefer D, Meixner FX, Domroes M (2011) Recent trends of temperature change under hot and cold desert climates: comparing the Sahara (Libya) and Central Asia (Xinjiang, China). J Arid Environ 75(11):1105–1113

    Article  Google Scholar 

  • Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Clim Chang 125:53–65. https://doi.org/10.1007/s10,584-014-1097-0

    Article  Google Scholar 

  • Mavromatis T, Stathis D (2011) Response of the water balance in Greece to temperature and precipitation trends. Theor Appl Climatol 104:13–24. https://doi.org/10.1007/s00704-010-0320-9

    Article  Google Scholar 

  • Mearns LO, Rosenzweig C, Goldberg R (1996) The effect of changes in daily and interannual climatic variability on CERES-wheat: a sensitivity study. Clim Chang 32(3):257–292

    Article  Google Scholar 

  • Mgely, M., 1984. A forecasting model for monthly precipitation and temperature, and analysis of the characteristics of droughts in central California, unpublished Ph.D., Department of Geography, Indiana University

  • Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann-Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2(1):70–78

    Google Scholar 

  • NOAA ESRL Physical Sciences Division, 2017. SOI data, https://www.esrl.noaa.gov/psd/gcos_wgsp/ Timeseries/SOI

  • Onoz B, Bayazit M (2012) The power of statistical tests for trend detection. Turk J Eng Environ Sci 27(2003):247–251

    Google Scholar 

  • Ouda S, Ewise M, Noreldin T (2016) Projection of productivity of cultivated crops in rain-fed areas in Egypt under climate change. Cogent Food Agricult 2(1):1136256. https://doi.org/10.1080/23311932.2015.1136256

    Article  Google Scholar 

  • Panitz HJ, Dosio A, Buchner M, Luthi D, Keuler K (2014) COSMOCLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.4 ° and 0.22° resolution. Clim Dyn 42:3015–3038. https://doi.org/10.1007/s00,382-013-1834-5

    Article  Google Scholar 

  • Rind D, Goldberg R, Ruedy R (1989) Change in climate variability in the 21st century. Clim Chang 14(1):5–37

    Article  Google Scholar 

  • Rodriguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol: J Royal Meteorologic Soc 18(3):299–316

    Article  Google Scholar 

  • Samuelsson, P., Gollvik, S., Jansson, C., Kupiainen, M., Kourzeneva, E., Jan Van De Berg, W., 2015. The surface processes of the Rossby Centre regional atmospheric climate model (RCA4). Norrköping, Sweden

  • Schoenwiese C (1992) Praktische Statistik für Meteorologen und Geowissenschaftler, second edn. Gebrüder Borntraeger, Berlin and Stuttgart

  • Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K (2011) Trend analysis of reference evapotranspiration in the Western half of Iran. Agric For Meteorol 151:128–136

    Article  Google Scholar 

  • Tabari H, Talaee PH, Nadoushani SM, Willems P, Marchetto A (2014) A survey of temperature and precipitation based aridity indices in Iran. Quat Int 345:158–166

    Article  Google Scholar 

  • Thom H (1966) Some methods of climatological analysis, technical note, no.81. WMO, Geneva

    Google Scholar 

  • Tompkins EL (2005) Planning for climate change in small islands: insights from national hurricane preparedness in the Cayman Islands. Glob Environ Chang 15(2):139–149

    Article  Google Scholar 

  • Van Meijgaard, E., Van Ulft, L.H., Van De Berg, W.J., Bosveld, F.C., Van Den Hurk, B.J.J.M., Lenderink, G., Siebesma, A.P., 2008. Technical report; TR - 302. The KNMI regional atmospheric climate model RACMO version 2.1. De Bilt

  • Van Rooy MP (1965) A rainfall anomally index independent of time and space. NOTOS

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Article  Google Scholar 

  • Walter H, Lieth H (1967) Klimadiagram-Weltatlas. VEB Gustav Fischer Verlag, Jena http://www.zoolex.org/walter.html

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Williams K, Chamberlain J, Buontempo C, Bain C (2015) Regional climate model performance in the Lake Victoria basin. Clim Dyn 44:1699–1713. https://doi.org/10.1007/s00,382-014-2201-x

    Article  Google Scholar 

  • Yu B, Neil DT (1993) Long-term variations in regional rainfall in the south-west of Western Australia and the difference between average and high intensity rainfalls. Int J Climatol 13(1):77–88

    Article  Google Scholar 

  • Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218

    Article  Google Scholar 

  • Zappa G, Hawcroft MK, Shaffrey L, Black E, Brayshaw DJ (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45(7–8):1727–1738

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by CAS President’s International Fellowship Initiative (PIFI) for Visiting Fellows (Grant No. 2017VCA0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attia M. El-Tantawi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Tantawi, A.M., Anming, B., Liu, Y. et al. An assessment of rainfall variability in northern Egypt. Arab J Geosci 14, 1203 (2021). https://doi.org/10.1007/s12517-021-07272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07272-3

Keywords

Navigation