Skip to main content

Advertisement

Log in

Contribution of Sentinel-2 multispectral satellite images to study salinization effect of the Touggourt agricultural region (Algeria)

  • ArabGU2016
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a new spatio-morphological mapping of a region affected by the problem of salinization of its agricultural land. The rise of salt, which occurs naturally by infiltration of water passing through a saline layer through the faults, is accentuated by poor irrigation management, particularly by the use of Mio-Pliocene’s water with an excessive salt content and the inadequate drainage system. We use optical remote sensing data that allows us to study a spacious area with high accuracy (up to 10-m resolution) using Sentinel-2 images in combination with in situ data. In addition to the use of heterogeneous data, we also combine several methods (salinity and vegetation index, K-means clustering, and artificial neural networks classification) to achieve more accurate and reliable results by using software specially designed for this type of processing such as SNAP with its two versions (python dependent and stand-alone). We obtain an occupation map with six classes (dry salty soils, fine sand, medium sand, vegetation, agricultural land, and buildings) with a surface area of salt soils reaching 23% of the total surface area against only 14% of vegetation that is still likely to decrease. These methods allowed us not only to delimit the region affected by the excess salt with more or less intensity but also to highlight its impact on the quality of the vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas A, Khan S ( 2007) Using remote sensing techniques for appraisal of irrigated soil salinity. In Proceedings of the International Congress on Modelling and Simulation (MODSIM ‘07), : Oxley L, Kulasiri D. Modelling and simulation Society of Australia and new Zealand, Brighton, UK 2632–2638

  • Belksier MS (2017) Caractéristiques hydrogéologiques de la nappe superficielle dans la région de l’Oued Righ et évaluation de l’impact de la pollution et de la salinité sur la qualité de ses eaux. Doctoral thesis. Badji Mokhtar-Annaba University, Algeria

  • Belksier MS, Chaab S, Abour F (2016) Hydrochemical quality of the groundwater of the unconfined aquifer in Oued Righ region and assessement of its vulnerability to pollution. Rev Sci Technol 32:42–57

    Google Scholar 

  • Boulghorba N, Koull N, Benzaoui T (2016) Four decades period of climatic data for assessing the Aeolien hazard in the region of Touggourt (low Algerian Sahara). Geographia Technica 11(1):13–22. https://doi.org/10.21163/GT_2016.111.03

    Article  Google Scholar 

  • Bouznad IE, Zouini D, Nouiri I, Khelfaoui F (2016) Essay of modelling water resources management of the Oued Righ watershed (Algeria) using the WEAP decision support system. Rev Sci Technol 33:56–71

    Google Scholar 

  • Busson G, Lebeau J (1967) Carte géologique du bassin mésozoïque du Sahara algéro-tunisien et de ses abords. CNRS, Paris

    Google Scholar 

  • Chitroun S (2004) Analyse en composantes principales d’images optiques de télédétection. Colloque Africain sur la Recherche en Informatique, Hammamet

    Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177

    Article  Google Scholar 

  • Dehaan R, Taylor GR (2003) Image-derived spectral end members as indicators of salinization. Int J Remote Sens 24:775–794.10.1080/01431160110107635

    Article  Google Scholar 

  • Dehni A, Lounis M (2012) Remote sensing techniques for salt affected soil mapping: application to the Oran region of Algeria. Procedia Eng 33:188–198. https://doi.org/10.1016/j.proeng.2012.01.1193

    Article  Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis, vol 44. Wiley, Hoboken, pp 258–259. https://doi.org/10.1086/620282

    Book  Google Scholar 

  • El Fergougui MM, Boutoutaou D, Mezza N (2016) Etude de l’évaporation de la nappe phréatique des zones arides: cas de Ouargla (Algérie). Hydrol Sci J 62:1067–1077. https://doi.org/10.1080/02626667.2016.1257855

    Article  Google Scholar 

  • Fabre J, Jonquet B, Bronner G (1978) Carte géologique du nord-ouest de l‘Afrique - SNED, Algiers

  • Fallah Shamsi SR, Zare S, Abtahi SA (2013) Soil salinity characteristics using moderate resolution imaging spectroradiometer (MODIS) images and statistical analysis. Journal Archives of Agronomy and Soil Science 59:4–489. https://doi.org/10.1080/03650340.2011.646996

  • Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L (2012) Soil salinity development in the yellow river delta in relation to groundwater dynamics. Degrad L Dev 23:175–189. https://doi.org/10.1002/ldr.1071

    Article  Google Scholar 

  • Fernández-Buces N, Siebe C, Cram S, Palacio JL (2006) Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former Lake Texcoco, Mexico. J Arid Environ 65(4):644–667. https://doi.org/10.1016/j.jaridenv.2005.08.005

    Article  Google Scholar 

  • Gatet L (2007) Integration of neural networks for laser rangefinding systems. Doctoral thesis, Laboratoire d’Optoélectronique pour les Systèmes Embarqués - LOSE, Toulouse, France

  • Goetz AFH, Herring M (1989) The high resolution imaging spectrometer (HIRIS) for EOS. IEEE Trans Geosci Remote Sens 27:136–144. https://doi.org/10.1002/ima.1850030209

    Article  Google Scholar 

  • Hick PT, Davis JR, Steckis RA (1984) Mapping salinity in Western Australia using remotely sensed data, satellite remote sensing, proceedings of the 10th anniversary conference, Reading 1984 (Remote Sensing Society, University of Reading), Department of Electrical Engineering, Arkansas University, Fayetteville, 343–350

  • Huete A, Didan K, Miura T, Rodriquez EP, Gao X, Ferreria G (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A (2017) Satellite thermography for soil salinity assessment of cropped areas in Uzbekistan. Land Degrad Dev 28(3):870–877. https://doi.org/10.1002/ldr.2670

    Article  Google Scholar 

  • Khadraoui A, Taleb S (2012) Qualité des eaux dans le sud algérien potabilité-pollution et impact sur le milieu 350

  • Khelifi Touhami M, Bouraoui S, Berguig MC (2019) Contribution of satellite imagery to study salinization effect of agricultural areas at northern eastern oasis Algerian region. Advances in science, Technology & Innovation 235–238. https://doi.org/10.1007/978-3-030-01440-7_55

  • Koull N, Chehma A (2014) Soil-vegetation relationships of saline wetlands in north east of Algerian Sahara. Arid Land Res Manag 29(1):72–84. https://doi.org/10.1080/15324982.2014.898346

    Article  Google Scholar 

  • Legros JP (2009) La salinisation des terres dans le monde, Montpelier

  • Major DJ, Baret F, Guyot G (1990) A ratio vegetation index adjusted for soil brightness. Int J Remote Sens 11(5):727–740. https://doi.org/10.1080/01431169008955053

    Article  Google Scholar 

  • Metternicht GI (1998) Analyzing the relationship between ground based reflectance and environment indicators of salinity processes in the Cochabamba Valley (Bolivia). Int J Ecol Environ Sci 24(4):359–370

    Google Scholar 

  • Mihoub A, Helimi S, Mokhtari S, Kharaz EH, Koull N (2015) Date palm (Phoenix dactylifera L.) irrigation water requirements as affected by salinity in Oued Righ conditions, North Eastern Sahara, Algeria. Asian J Crop Sci 7(3):174–185. https://doi.org/10.3923/ajcs.2015.174.185

    Article  Google Scholar 

  • Ministry of Water Resources (2009) Etude d’inventaire et de developpement, partie 1 : inventaire de la PMH Wilaya de Ouargla, Algeries

  • Mohamedou Ould Baba SY (2005) Recharge et Paléorecharge du système aquifère du Sahara septentrional, geology doctorate thesis. University of Tunis and Manar, Tunisia , 271

  • Mougenot B, Pouget M, Epema GF (1993) Remote sensing of salt-affected soils. Remote Sens Rev 7:241–259. https://doi.org/10.1080/02757259309532180

    Article  Google Scholar 

  • Ng SC (2017) Principal component analysis to reduce dimension on digital image. 8th International Conference on Advances in Information Technology. Procedia Comput Sci, 111:113–119. https://doi.org/10.1016/j.procs.2017.06.017

  • Perennes JJ (1979) Structures agraires et décolonisation. Les Oasis de l’Oued-Righ (Algérie). OPU Edition, 372

  • Rao BRM, Sharma RC, Ravi Sankar T, Das SN, Dwivedi RS, Thammappa SS, Venkataratnam L (1995) Spectral behaviour of salt-affected soils. Int J Remote Sens 16(12):2125–2136. https://doi.org/10.1080/01431169508954546

    Article  Google Scholar 

  • Rekiki A, Zribi M, Ben Hamida A, Benjelloum M (2009) An optimal unsupervised satellite image segmentation approach based on Pearson system and kMeans clustering algorithm initialization. International Science Index 11:948–955. https://doi.org/10.5281/zenodo.1085479

    Article  Google Scholar 

  • Rouse Jr J et al. (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication 351–309

  • Schmid T, Koch M, Gumuzzio J (2008) Application of Hyperspectral imagery to soil salinity mapping. In: Metternicht G, Zinck J (eds) Remote sensing of soil salinization: impact on land management. CRC Press, Boca Raton, pp 113–137. https://doi.org/10.1201/9781420065039

    Chapter  Google Scholar 

  • Singh RP, Sirohi A (1994) Spectral reflectance proper-ties of different types of soil surfaces. ISPRS J Photogramm Remote Sens 49(4):34–40. https://doi.org/10.1016/0924-2716(94)90045-0

    Article  Google Scholar 

  • SNAP (2018) Help contents. European Space Agency

  • Svozil D, KvasniEka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst 39:43–62. https://doi.org/10.1016/S0169-7439(97)00061-0

    Article  Google Scholar 

  • Trnka M, Kersebaum KC, Eitzinger J, Hayes M, Hlavinka P, Svoboda M, Dubrovsky M, Semeradova D, Wardlow B, Pokorny E, Možny M, Wilhite D, Žalud Z (2013) Consequences of climate change for the soil climate in Central Europe and the central plains of the United States. Clim Chang 120:405–418. https://doi.org/10.1007/s10584-013-0786-4

    Article  Google Scholar 

  • Van Beek CL, Tóth G (2012) Risk assessment methodologies of soil threats in Europe. JRC Scientific and Policy Reports EUR 24097

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madina Khelifi Touhami.

Additional information

This article is part of the Topical Collection on Current Advances in Geology of North Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelifi Touhami, M., Bouraoui, S. & Berguig, MC. Contribution of Sentinel-2 multispectral satellite images to study salinization effect of the Touggourt agricultural region (Algeria). Arab J Geosci 13, 548 (2020). https://doi.org/10.1007/s12517-020-05551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05551-z

Keywords

Navigation