Skip to main content

Advertisement

Log in

Understanding groundwater chemistry in Mediterranean semi-arid system using multivariate statistics techniques and GIS methods: case of Manouba aquifer (Northeastern Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The rapid urbanization and industrialization of the Manouba plain (Northeastern Tunisia), the extensive agricultural expansion and the succession of dry years during recent decades have exerted greatly load on the water needs and lead to groundwater quality degradation. The aim of this study is to evaluate the processes controlling the groundwater mineralization of the shallow aquifer for determining its suitability for drinking and agricultural purposes. For establishing that, we combine several geological, hydrological and hydrochemical data with geostatistical techniques. The samples were collected at 17 sites covering 230 km2 of the study area and analyzed for major and trace components. The total dissolved solid (TDS) content ranges from 1372 to 3999 mg/l. The results of Piper diagram indicate that Na+/Cl and Ca2+ > Na+/SO4 2− were the main dominant water types localized in the sloping sides of the watershed and near the saline depression; the suitability for irrigation use was also evaluated. The high concentrations of nitrates and chlorides are indicators of anthropogenic pollution, like the agricultural over application of nitrogen fertilizers and the discharge of domestic and industrial wastewater. Saturation indexes calculated by using PHREEQC (USGS) program show that groundwaters are undersaturated with evaporitic minerals (halite, gypsum) and saturated with carbonates (calcite, aragonite). The use of principal component analysis and hierarchical cluster analysis has shown that two main factors accounting 67.13% of the information of variability within the dataset confirm the existence of dissolution of evaporitic minerals and the mechanisms of nitrate increasing the salinity of the Manouba groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abuelaish B, Camacho Olmedo MT (2016) Scenario of land use and land cover change in the Gaza strip using remote sensing and GIS models. Arab J Geosci 9(4):9–274. https://doi.org/10.1007/s12517-015-2292-7

  • Added A, Ben Mammou A, Fernex F, Rezzougc S, Bernatb M (2015) Distribution of uranium and radium isotopes in an aquifer of a semi-arid region (Manouba-Essijoumi, northern Tunisia). J Environ Radioact 82(3):371–381. https://doi.org/10.1016/j.jenvrad.2005.02.010

    Article  Google Scholar 

  • Anju A, Ravi SP, Bechan S (2010) Water pollution with special reference to pesticide contamination in India. J. Water Resour Prot 2(05):432–448. https://doi.org/10.4236/jwarp.2010.25050

    Article  Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution, 2nd edn. Taylor and Francis, Great Britain 536p

    Google Scholar 

  • Arnous MO, El-Rayes AE (2012) An integrated GIS and hydrochemical approach to assess groundwater contamination in West Ismailia area. Egypt Arab J Geosci 6(8):2829–2842. https://doi.org/10.1007/s12517-012-0555-0

    Article  Google Scholar 

  • Babiker IS, Mohamed AAM, Hiyama T (2007) Assessing groundwater quality using GIS. Water Resour Manag 21(4):699–715. https://doi.org/10.1007/s11269-006-9059-6

    Article  Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater - a case study: Ain Azel plain (Algeria). Geoderma 159(3-4):390–398. https://doi.org/10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Ben Hamouda MF, Mamou A, Bejaoui J, Froehlich K (2013) Hydrochemical and isotopic study of groundwater in the north Djeffara aquifer, gulf of Gabès, southern Tunisia. Int J Geosci 4(08):1–10. https://doi.org/10.4236/ijg.2013.48A001

    Article  Google Scholar 

  • Boutib L (1998)Tectonique de la région du Grand Tunis : Evolution géométrique et cinématique des blocs structuraux du Mésozoique à l’actuel (Atlas nord oriental de la Tunisie). Ph.D. Dissertation, Université Tunis, 151 p

  • Chattaoui H (1972) Etude hydrogéologique de la plaine de Manouba-Sejoumi par prospection électrique. Ph.D. Dissertation Sciences de la Terre, Strasbourg Institut de Physique du globe

  • Chouari W (2013) Problèmes d'environnement liés à l'urbanisation contemporaine dans le système endoreïque d'Essijoumi (Tunisie nord-orientale). Physio-Géo 7-1:111–138. https://doi.org/10.4000/physio-geo.3493

    Article  Google Scholar 

  • Choudhary S, Ramteke S, Rajhans KP, Sahu PK, Chakradhari S, Patel KS, Matini L (2016) Assessment of groundwater quality in Central India. J Water Resour Prot 8(01):12–19. https://doi.org/10.4236/jwarp.2016.81002

  • Corniello A, Ducci D (2014) Hydrogeochemical characterization of the main aquifer of the “Litorale Domizio-agro Aversano NIPS” (Campania-southern Italy). J Geochem Explor 137:1–10. https://doi.org/10.1016/j.gexplo.2013.10.016

  • Davis SN, RJM de Wiest (1967) Hydrogeology. Journal of Hydrology 5:98

  • Deepesh M, Madan KJ (2015) Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. J Hydrol: Reg Stud 4:80–110. https://doi.org/10.1016/j.ejrh.2014.11.005

  • Dickson A, Abass G, Tetteh TA, Richmond F, Piotr M (2011) Hydrogeochemical evolution and groundwater flow in the Densu River basin, Ghana. J Water Resour Prot 3(07):548–556. https://doi.org/10.4236/jwarp.2011.37065

    Article  Google Scholar 

  • Eblin SG, Soro GM, Sombo AP, Aka N, Kambiré O, Soro N (2014) Hydrochimie des eaux souterraines de la région d’ADIAKÉ (Sud-Est côtier de la Côte d’Ivoire). Larhyss Journal, ISSN 1112–3680, n°17, pp. 193–214

  • Edmunds WM (2003) Renewable and non-renewable groundwater in semi-arid and arid regions. Dev Water Sci 50:265–280

    Article  Google Scholar 

  • ESRI (Environmental Systems Research Institute) (2017). http://www.esri.com/

  • Eugster HP, Jones BF (1979) Behaviour of major solutes during closed-basin brine evolution. Am J Sci 279(6):609–631. https://doi.org/10.2475/ajs.279.6.609

  • Farhat B, Ben Mammou A, Kouzana L, Chenini I, Podda F, De Giudici G (2010) Groundwater chemistry of the Mornag aquifer system in NE Tunisia. Resour Geol 60(4):377–388. https://doi.org/10.1111/j.1751-3928.2010.00142.x

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Gharbia AS, Gharbia SS, Abushbak T, Wafi H, Aish A, Zelenakova M, Pilla F (2016) Groundwater quality evaluation using GIS based geostatistical algorithms. J Geosci Environ Prot 4(02):89–103. https://doi.org/10.4236/gep.2016.42011

    Google Scholar 

  • Ghoraba Sh M, Khan AD (2013) Hydrochemistry and groundwater quality assessment in Balochistan province, Pakistan. https://www.arpapress.com/Volumes/Vol17Issue2/IJRRAS_17_2_06. pdf

  •  INM (Institut National de Métérrologie) (2012) Données climatiques sur le Nord Est de la Tunisie

  • Iranmanesh A, Locke RA, Wimmer BT (2014) Multivariate statistical evaluation of groundwater compliance data from the Illinois Basin-Decatur project. Energy Procedia 63:3182–3194. http://creativecommons.org/licenses/by-nc-nd/3.0/. https://doi.org/10.1016/j.egypro.2014.11.343

    Article  Google Scholar 

  • Kacem J (2004) Etude sismotectonique et évaluation de l’aléa sismique régional du Nord-Est de Tunis : Apport de la sismique réflexion dans l’identification des sources sismogéniques. Ph.D. Dissertation, Université Tunis el Manar, 200p

  • Ketata M, Hamzaoui F, Gueddari M, Bouhlila R, Ribeiro L (2011) Hydrochemical and statistical study of groundwaters in Gabes-south deep aquifer (south- eastern Tunisia). Phys Chem Earth A/B/C 36(5–6):187–196. https://doi.org/10.1016/j.pce.2010.02.006

    Article  Google Scholar 

  • Khadhraoui N (2013) Effets de l’urbanisation sur les ressources en eau de la plaine de Manouba. Ph.D. dissertation, Faculty of Sciences of Tunis, university Tunis el Manar, 148p

  • Ledesma-Ruiz R, Pastén-Zapata E, Parra R, Harter T, Mahlknecht J (2015) Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J Hydrol 521:410–423. https://doi.org/10.1016/j.jhydrol.2014.12.026

    Article  Google Scholar 

  • Loizidou M, Kapetanios EG (1993) Effect of leachate from landfills on underground quality. Sci Total Environ 128(1):69–81. https://doi.org/10.1016/0048-9697(93)90180E

    Article  Google Scholar 

  • Masoud AA (2014) Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J Afr Earth Sci 95:123–137. https://doi.org/10.1016/j.jafrearsci.2014.03.006

    Article  Google Scholar 

  • Mejri L (2012) Tectonique Quaternaire, paléoseismicité et sources seismogéniques en Tunisie Nord-Orientale : Etude de la faille d’Utique. Ph.D. Dissertation, Université de Toulouse 3 Paul Sabattier, 193p

  • Melki F (1997) Tectonique de l’extrémité nord-est de la Tunisie (Bizerte-Menzel Bourguiba-Mateur). Evolution tectonique de blocs structuraux du Crétacé supérieur au Quaternaire. Ph.D. Dissertation, Université Tunis II, 213p

  • Mencio A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352(3-4):355–366. https://doi.org/10.1016/j.jhydrol.2008.01.014

  • Nacef ML (1988) Effets de l’urbanisation sur la nappe de Manouba. Mémoire de diplôme d’études approfondies (DEA) en Sciences de la Terre, Université de Tunis, Faculté des Sciences, 53p

  • Nagaraju A, Muralidhar P, Sreedhar Y (2016) Hydrogeochemistry and groundwater quality assessment of Rapur area, Andhra Pradesh, South India. J Geosci Environ Prot 2016(4):88–99. https://doi.org/10.4236/gep.2016.44012

    Google Scholar 

  • NAZA (National Aeronautics and Space Administration) (2017) Digital Elevation Model in Shuttle Radar Topography Mission of Manouba area in Tunisia. http://opentopo.sdsc.edu/datasets

  • Ouerghi S (2014) Intégration des données multisources (Géologiques, sismologiques, géophysiques et géomorphomètriques) dans un environnement SIG pour l’analyse structurale du Nord Est de la Tunisie. Ph.D. Dissertation, University of Sfax, Ecole Nationale d’Ingénieurs de Sfax, 271 p

  • Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH, Lee SK (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313(3-4):182–194. https://doi.org/10.1016/j.jhydrol.2005.03.001

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497 p

  • Pimenta J (1959) Le cycle pliocène-actuel dans les bassins paraliques de Tunis. Mém Soc Géol France 85:35–40

  • Raheli-Namin B, Mortazavi S, Mobinifar M, Adeli M (2016) Groundwater-quality probability mapping and assessment for domestic and irrigation purposes in Ghara-su Basin of Golestan Province. Iran J Mater Environ Sci 7(1):259–271

    Google Scholar 

  • Ravikumar P (2015) A comparative study on usage of Durov and Piper diagrams to interpret hydrochemical processes in groundwater from SRLIS. https://www.researchgate.net/publication/273886861

  • Ravikumar P, Somashekar RK (2015) Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state. India Appl Water Sci 7(2):745–755. https://doi.org/10.1007/s13201-015-0287-x

  • Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59(7):1579–1588. https://doi.org/10.1007/s12665-009-0143-0

    Article  Google Scholar 

  • Sanchez Martos F, Pulido Bosch A, Calaforra JM (1998) Hydrogeochemical processes in arid region of Europe (Almeria, SE Spain). Appl Geochem 14:735–745

    Article  Google Scholar 

  • Sarath Prasanth SV, Magesh NS, Jitheshlal KV, Chandrasekar N, Gangadhar K (2012) Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala. India Appl Water Sci 2(3):165–175. https://doi.org/10.1007/s13201-012-0042-5

    Article  Google Scholar 

  • Singaraja C, Chidambaram S, Anandhan P, Prasanna MV, Thivya C, Thilagavathi R, Sarathidasan J (2013) Hydrochemistry of groundwater in a coastal region and its repercussion on quality, a case study-Thoothukudi district, Tamilnadu India. Arab J Geosci 7(3):939–950. https://doi.org/10.1007/s12517-012-0794-0

    Article  Google Scholar 

  • Singh S, Raju NJ, Ramakrishna C (2015) Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi region, Uttar Pradesh, India. J Water Resour Prot 7(07):572–587. https://doi.org/10.4236/jwarp.2015.77046

    Article  Google Scholar 

  • Stigter TY, Van Ooijen SPJ, Post VEA, Appelo CAJ, Carvalho Dill AMM (1998) A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol 208(3–4):262–279. https://doi.org/10.1016/S0022-1694(98)00168-1

    Article  Google Scholar 

  • Tarki M, Ben Hammadi M, El Mejri H, Dassi L (2016) Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: a case study of Nefzaoua basin, southern Tunisia. Appl Radiat Isot 110(5-6):138–149. https://doi.org/10.1016/j.pce.2010.03.039

    Article  Google Scholar 

  • Twana OA, Salahalddin SA, Nadhir AA (2016) Groundwater assessment of Halabja Saidsadiq Basin, Kurdistan region, NE of Iraq using vulnerability mapping. Arab J Geosci 9(3):9–223. https://doi.org/10.1007/s12517-015-2264-y

    Google Scholar 

  • USSL (United States Salinity Laboratory Staff) (1954) Diagnosis and Improvement of Saline and Alkali Soils. US Department of Agricultural Soils. US Department of Agricultural (USDA). Hand Book 60, Washington, 69-81p

  • Wedman EJ (1964) Geohydrology of sebkra Sedjoumi (TUNISIA). Édit. AIHS Publication, n° 64, p 50–67

  • WHO (World Health Organization) (2004) Guidelines for drinking-water quality, vol 1, 3rd edn, recommendations edn. WHO, Geneva, pp 145–220

  • Wick K, Heumesser C, Schmid E (2012) Groundwater nitrate contamination: factors and indicators. J Environ Manag 111(3):178–186. https://doi.org/10.1016/j.jenvman.2012.06.030

    Article  Google Scholar 

  • Zghibi A, Zouhri L, Tarhouni J, Kouzana L. (2012) Groundwater mineralisation processes in Mediterranean semi-arid systems (Cap-Bon, North east of Tunisia): hydrogeological and geochemical approaches. Hydrol. Process. Published online in Wiley Online Library (wileyonlinelibrary.com). https://doi.org/10.1002/hyp.9456

  • Zghibi A, Tarhouni J, Zouhri L (2013) Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of cap-bon (north-east of Tunisia). J Afr Earth Sci 87:1–12. https://doi.org/10.1016/j.jafrearsci.2013.07.009

    Article  Google Scholar 

  • Zghibi A, Merzougui A, Zouhri L, Tarhouni J (2014) Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of cap-bon (north-east of Tunisia). J Afr Earth Sci 89:1–15. https://doi.org/10.1016/j.jafrearsci.2013.09.004

    Article  Google Scholar 

  • Zouhri L, Carlier E, Ben Kabbour B, Toto EA, Gorini C, Louche B (2008) Groundwater interaction in the coastal environment: hydrochemical, electrical and seismic approaches. Bull Eng Geol Environ 67(1):123–128. https://doi.org/10.1007/s10064-007-0101-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Director of National Nuclear Research Institute for making funds available for this work. We also thank all the Technicians of the Isotope Hydrology and Geochemistry Unit, Technopark Sidi Thabet, Tunisia, for helping us during the sampling campaigns as well as the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Ferchichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferchichi, H., Farhat, B., Ben-Hamouda, M.F. et al. Understanding groundwater chemistry in Mediterranean semi-arid system using multivariate statistics techniques and GIS methods: case of Manouba aquifer (Northeastern Tunisia). Arab J Geosci 10, 530 (2017). https://doi.org/10.1007/s12517-017-3314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3314-4

Keywords

Navigation