The survey to identify springs in the region was based on the comprehensive Internet searching which followed by interviews of local people and spring visitors. The Ain Musa Spring, the Wadi Tayyib Ism spring, and the Wadi Qaraqir springs have been initially recognized via Internet searches since 2009. On the other hand, interviews with local people helped to realize the Al Qattar spring at Az Zaytah and the two springs in Wadi Ghamrah (Fahad Alhuwati, personal communication, August 1, 2009; Abdullah Alatowi, personal communication, August 3, 2009). Concurrently, an interview with Mohammed Albluwi on October 14, 2016 assisted in knowing the Asaad spring, and he also mentioned that many seepages and small springs are available in the inaccessible upper reaches of Wadi Ghamrah stressing on the variations in their discharges from year to year.
This study has identified, located, measured, and described a total of nine springs (Table 1). In the western part of the region, two springs have been recorded which are Ain Musa Spring and Wadi Tayyib Ism spring, while six springs have been found in the eastern part of the region at Wadi Qraqir and Wadi Ghamrah the two main branches of Wadi Ad Disah basin (three springs at Wadi Qraqir, two springs in Wadi Ghamrah, and one spring at a high point on the scarp of Hisma plateau at the most upper reaches of Wadi Qraqir). The springs in the northwest region of Saudi Arabia have been discussed as individuals or groups under the following four titles, starting with springs located along the eastern coast of the Gulf of Aqaba.
Table 1 Characteristics of springs in northwest Saudi Arabia
Ain Musa (Moses) spring
The Ain Musa Spring is located at Maqna town, i.e., at the lower reaches of Wadi al Hamdah basin. Trent and Johnson (1968) reported that Maqna town once was an ancient maritime port and capital city of the “Land of Midian.” It was listed by Ptolemy that is one of the several “Mediterranean cities” in Arabia Felix” (p. 1). The spring pool geographic coordinates are 28° 23′ 46″ N 34° 45′ 03″ E. About 1200 m to the southeast from the Gulf of Aqaba along the Wadi al Hamdah, the northern valley side slope rises abruptly forming a small sandy plateau, which is mainly sloping towards the northwest. The spring emerges on top of the plateau at a height about 50 m above sea level and about 40 m above the adjacent wadi channel bed. The distance from the spring pool to the adjacent wadi channel bed is about 105 m (Fig. 5). Based on field visits, it is clear that this plateau is mainly formed of sandstone and limestone. Actually, the geologic map of Al Bad’ quadrangle, sheet 28 (Clark 1987), shows that the area of the Ain Musa spring is covered by Nutaysh formation of Raghama Group which composed of conglomerate, sandstone, marl, and limestone. It must be mentioned that this formation in the Maqna area is having other lithostratigraphic names used in previous works, for instance, Raghama formation (Brown et al. 1963; Trent and Johnson 1968; Brown et al. 1989) and Burqan formation (Al-Laboun et al. 2014). Al-Laboun et al. (2014) stated that”
The sandstone of Burqan Formation is a part of sedimentary succession in the Midyan Basin, northwestern Saudi Arabia. The thick marine siliciclastic succession of this formation is well exposed in the west of Jabal Rughama (flanking the Magna Massif) and along the Gulf of Aqaba coast (north and south of Magna village) …. The Burqan Formation was deposited over the tectonically controlled Red Sea rift. The depositional system has been identified as a deep marine turbidite …. The Burqan Formation unconformably overlies the Tayran Group as well as the Proterozoic Basement. At the Jabal Al-Risha exposure, sandstone of the Burqan Formation conformably overlies the oyster-bearing carbonates of the Musayr Formation. The Burqan Formation is then unconformably overlain by anhydrite of the Kial Formation, a part of the Magna Group (p. 205).
Furthermore, the 1:250,000-scale geologic map of the Al Bad’ quadrangle reveals that this formation extends mainly from Maqna town towards the northeast forming a series of mountains along the Gulf of Alaqaba called Jabal An Nutaysh. The maximum height of these mountains is about 500 m above sea level.
Previous studies on the Midyan region, northwest Saudi Arabia, pointed out that the common groundwater aquifers in the area are unconfined shallow aquifers of Wadi alluvium underlain with weathered bedrocks (Zumlot et al. 2016). Ghrefat et al. (2014) indicated that the depth of aquifers is <60 m with shallow groundwater table. The aquifers in this area are mainly recharged from current irregular rainfall and runoff (Al-Taani et al. 2013). Definitely, the Ain Musa spring discharges fresh groundwater of an aquifer and studying the aquifer characteristics such as areal extent, thickness, water table depth or piezometric surface, and hydraulic properties is beyond the scope of this paper. Therefore, it is only an attempt to provide general information and modest explanation of the aquifer which supplies the Ain Musa spring with water. Although the valley side of the Wadi al Hamdah is an exposure of the southern end of the Nutaysh formation, the Ain Musa spring emerges at a height about 40 m above the adjacent wadi channel bed which is only about 105 m to the south of the spring pool. This fact excludes the assumption that the water feeding the Ain Musa spring is coming from a wadi alluvium unconfined aquifer. At the same time, it can be used as an indication that the Nutaysh formation is serving as an aquifer to supply this spring with water. Besides, the topographic position of the spring reveals that water supply of the spring comes from a confined aquifer. Therefore, the Ain Musa spring can be classified, based on the force causing the spring (Bryan 1919), as an artesian fissure spring.
It can be seen from Table 1 that only minor changes occurred of water quantity and quality measurements in the Ain Musa spring which were carried out 2009, 2011, and 2016. Average electric conductivity in the spring was about 2170 μmohs/cm, and average discharge was about 223 l/min. The water of the spring has been used mainly to irrigate many small palm groves with a total area about 153,500 m2. The water of the spring, flowing under gravity from a higher level to a lower level through traditional ditches, has been used to irrigate these palm groves. During an interview conducted on October 16, 2016, Mr. Mohammed Alfaydi (one of the palm groves owners) stated that the farmers since several centuries have had a conventional systematic manner to manage, to share, and to distribute the water of the spring. He mentioned that the Gregorian calendar has been used to distribute the water of the spring equitably among the farmers.
Measurements of multi-temporal Landsat images indicated that total areas of palm groves were very similar in 1972, 1987, and 1999 (Fig. 6), where it was about 153,500 m2. This may indicate to the temporal consistency of water discharge from the spring. On the other hand, Landsat image acquired 2016 showed a decrease of about 40% in the total area of palm groves, where it was about 92,000 m2. Alfaydi (personal communication, October 16, 2016) pointed out that the discharge of the spring has never decreased and attributed the change in the total area of palm groves in the recent years to social and economic factors rather than discharge declining. He clarified that local people have been more educated and could easily find easier, more convenient, and more profitable jobs in governmental or private sectors. It should be noted that Saudi Arabia, in the final quarter of the last century, had experienced an enormous economic growth due to huge oil and gas revenues which resulted in changes in socio-economic patterns of the country. Besides, Mr. Alfaydi mentioned that the modest income of these small traditional farms and the better opportunity of working in governmental or private sectors have led to the lack of care to the palm groves. Therefore, the palm groves had two fires in the last few years, because of letting dry date palm fronds and fibers to accumulate in the palm groves.
Wadi Tayyib Ism spring
The Wadi Tayyib Ism spring is located in the lower reaches of Wadi Tayyib Ism drainage basin which flow in the Gulf of Aqaba. In fact, the lower reaches of Wadi Tayyib Ism form a granite canyon. Clark (1987), Hughes et al. (1999), and Tubbs et al. (2014) provided the most comprehensive description of the geology of the Midyan region. The 1:250,000-scale geologic map of the Al Bad’ quadrangle (Clark 1987) shows that the rock bodies in the Wadi Tayyib Ism basin are made of Cenozoic sedimentary, Proterozoic stratiform, and intrusive rocks. In some places of the wadi basin, sedimentary strata overlie the Precambrian rocks. In fact, the area is covered by different types of rocks including diorite, gabbro, monzogranite, granodiorite, alkali granite, alkali quartz syenite, sandstone, and conglomerate.
At the outlet of the Wadi Tayyib Ism, mountains extend directly into the sea water forming the shoreline of the Gulf of Aqaba. The lower reaches of the wadi forms a magnificent narrow canyon extending upward from its outlet at the Gulf of Aqaba to about 2.5 km (see Fig. 4). Generally speaking, the canyon extends in a west direction towards the Gulf of Aqaba. The height of the gorge walls is about 300 m from the canyon’s floor. The canyon floor is covered partially with medium gravels, and the bedrock exposes in many areas of the floor.
Actually, the coastal granite mountain range in the lower reaches is much higher than hilly land in the middle reaches of the basin. However, an impressive stream ravine has cut through this massive granite geologic block to find its way to the sea. The geologic map compiled by Clark (1987) shows that a Cenozoic sandstone layer overlies the Precambrian granite bedrock near the upper end of the canyon. Besides, geologic maps do not show any faults coinciding with the direction of the canyon. Therefore, one may argue that the drainage system in the Wadi Tayyib Ism established on the formerly overlying sandstone formation and inherited by the lower granite block forming a superimposed stream.
About 1600 m from the Gulf of Aqaba, the Wadi Tayyib Ism spring emerges from the streambed at 28.56799° N 34.80865° E. In the two first field visits 2009 and 2011, the spring ran down continuously as a small stream for a distance about 1150 m to end at a natural pool excavated at granite rocks which are located at 28° 33′ 40.98″ N 34° 48′ 19.45″ E. The discharges were estimated to be 19 l/min in 2009 and 34 l/min in 2011. From Table 1, it can be seen that the spring discharge is highly variable, where the discharge in 2016 represented only 26% of the discharge in 2011. In 2016, the natural pool was completely dry because the spring discharge was not reaching it. In fact, the spring discharge was estimated to be about 9 l/min, and the spring stream had discontinuous flow for a distance about 620 m. The flow discontinuity was because of average infiltration rates exceeded flow rates in some areas along this distance of the spring stream. The variations of the spring discharge may be attributed to the water recharge from precipitation and runoff at the wadi basin. On the other hand, electrical conductivity measurements of the spring were 5300, 5150, and 4500 μmohs/cm in 2009, 2011, and 2016, respectively. These measurements have shown that water quality of the spring varied from year to year. The EC in 2016 was about 15% less than the EC value in 2009. The variations of water flows and EC values of the Wadi Tayyib Ism spring for the three different years can be easily seen in Table 1. Moreover, from a quick look at the EC values and discharge rates, one may realize that no relationship between water quantities and qualities of the spring.
Wadi Ad Disah springs
Ad Disah is an agricultural village located at 27.60447° N 36.42781° E. This village exists at the confluence of three major canyons in the region. The Wadi Qaraqir and the Wadi Ghamrah are the main branches in the Wadi Ad Disah basin which drain a sandstone area of Jabal Qaraqir. The 1:250,000-scale geologic map of the Shaghab quadrangle (Graiger and Hanif 1989) shows that the rock bodies in the Wadi Ad Disah basin are mainly made of Paleozoic sandstone. Besides, basaltic lava overlies these sedimentary strata in small places of the wadi basin. Newton (1995) stated that:
Jabal Qaraqir is composed of a sequence of three formations: the uppermost red Rumm sandstone, the middle cream to orange coloured Quweira sandstone and the lower, massive dark red Siq sandstone and conglomerates, standing on a base of eroded Pre-Cambrian rocks. The sandstone massif is deeply eroded into precipitous pinnacles and steep-walled, narrow canyons (p. 20).
The canyons in lower reaches of Wadi Qaraqir and middle the reaches of Wadi Ghamrah contain springs. The canyon floor in lower reaches of Wadi Qaraqir is filled with alluvial sediments composing mainly of sand and fine gravels, whereas the canyon floor in middle the reaches of Wadi Ghamrah is filled with coarse gravels, pebbles, and boulders. The canyon floor in lower reaches of Wadi Qaraqir is narrow and mainly occupied by stream channels and sandbars. It is vegetated with relatively dense wetland plants, namely Phragmites and Typha. The color composites of multi-temporal Landsat images give a general impression that no major changes in the vegetation cover at the canyon floors (Fig. 7). One of the widely used indices to measure vegetation cover conditions from remotely sensed images is Normalized Difference Vegetation Index (NDVI) which is calculated from the red (RED) and near-infrared (NIR) bands as: NDVI = (NIR − RED)/(NIR + RED). Since the relatively dense wetland plants in the canyon floor indicate to water availability, the NDVI was applied on the historic Landsat image to determine the changes in density of green vegetation “greenness” in this area. The results have shown that no major vegetation greenness changes occurred. Thus, one may conclude that changes in water supply from springs are not extreme to impose negative changes on the vegetation cover during dry summer seasons.
Each of the two canyons has two types of springs which are gravity contact springs and gravity valley side springs. Besides, in the most upper reaches of Wadi Qaraqir, close to the water divide at 27.71389°N 36.56801°E, a gravity contact mesa (cliff) spring occurs which is called Asaad. The discharge of Asaad spring was 0.33 l/min in 2016 and the EC was 470 μmohs/cm (see Table 1). The gravity valley side springs and seepages in the canyons are emerging from the walls near their bottoms at the geographic locations 27.63367° N 36.52130° E and 27.65732° N 36.46243° E (see Fig. 1). Furthermore, three gravity contact springs emerge from the streambeds of the Wadi Qaraqir and the Wadi Ghamrah at the geographic locations 27.63250° N 36.56806° E, 27.63371° N 36.52135° E, and 27.65884°N 36.46778° E. The water from each gravity contact spring runs down as a small stream for hundreds of meters, and then the flowing water disappears when the infiltration rates of the alluvial deposits exceed the flow rates. Table 1 shows that the discharge of these springs varies from spring to spring and from year to year for each spring. For instance, the discharge of the Wadi Qraqir valley side spring ranges from 3.68 l/min measured in 2011 to 1.33 l/min measured in 2016. This means that the discharge in 2016 for the spring represented only 36% of its discharge in 2011. The discharge fluctuations of the springs in the region may reflect the annual recharge inconstancy to the aquifers that supplies them with water. On the other hand, it can be seen from Table 1 that water qualities of springs in the Wadi Ad Disah basin are very good, where it ranges between 420 and 730 μmohs/cm with small temporal changes.
Al Qattar spring
The Al Qattar is seepage in the form of water drops coming from a cave ceiling which is located at 28.87497° N 35.51168° E near Az Zaytah village. The cave is formed in partially weathered granite rocks. A Cenozoic sandstone layer overlies the Precambrian granite bedrock (Fig. 8). In fact, parts of the cave ceiling represent a bottom of a saturated zone of an aquifer. Thus, water drops come continuously from several places in its ceiling. Indeed, the water flowing out varies from one place to another in the cave ceiling, where the highest rate found was about 100 drops per minute. The water drops feed a permanent natural pool which occupies part of the cave floor. The electrical conductivity value of collected drops of water was 300 μmohs/cm.