Skip to main content
Log in

Gravity anomaly interpretation of 2D fault morphologies by means of nonplanar fault planes and exponential density contrast model: a space domain technique

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Boundary faults associated with thick sedimentary basins are more often curved in cross section rather than planar. We develop a space domain-based automatic gravity inversion technique to quantify such listric fault sources from a set of observed gravity anomalies. The density contrast within the hanging wall of fault morphology is presumed to be known according to a prescribed exponential law. Furthermore, the fault plane is described by a polynomial function of arbitrary but specific degree, whose coefficients become the unknown parameters to be estimated from a set of observed gravity anomalies in addition to the thickness of the fault structure. Using a set of characteristic anomalies, the present inversion identifies approximate parameters pertaining to the origin of fault plane and depth to decollement horizon. Based on the errors between the observed and model gravity anomalies of the structure, the algorithm constructs and solves a system of normal equations to estimate the improvements in depth and coefficients of the polynomial in an iterative approach until one of the specified convergence criteria is fulfilled. The efficacy of the algorithm is shown with the analysis of gravity anomalies attributable to a synthetic model of a listric fault source in the presence of pseudorandom noise. Application of the proposed inversion technique on the observed gravity anomalies of the Ahri-Cherla master fault of the Godavari subbasin in India using the derived exponential density contrast model has yielded an interpretation that is consistent with the available/reported information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelrahman EM, Essa KS (2015) Three least-squares minimization approaches to interpret gravity data due to dipping faults. Pure Appl Geophys 172:427–438. doi:10.1007/s00024-014-0861-4

    Article  Google Scholar 

  • Abdelrahman EM, Essa KS, Erabo-Ezz (2013) A least-squares window curves method to interpret gravity data due to dipping faults. J Geophys Eng 10: 025003. doi:10.1088/1742-2132/10/2/025003.

  • Abdelrahman EM, El-Araby HM, El-Araby TM, Abo-Ezz ER (2003) A least-squares derivatives analysis of gravity anomalies due to faulted thin slabs. Geophysics 68:535–543. doi:10.1190/1.1567222

    Article  Google Scholar 

  • Abdelrahman EM, Bayoumi AI, El-Araby HM (1989) Dip angle determination of fault planes from gravity data. Pure Appl Geophys 130:735–742

    Article  Google Scholar 

  • Aydogan D (2011) Extraction of lineaments from gravity anomaly maps using the gradient calculation: application to Central Anatolia. Earth Planets Space 63:903–913. doi:10.5047/eps.2011.04.003

    Article  Google Scholar 

  • Chacko S, Bhattacharya B (1980) A method for analyzing gravity anomalies due to a geologic contact by Fourier transform. Geoexploration 18:43–50. doi:10.1016/0016-7142(80)90005-8

    Article  Google Scholar 

  • Chakravarthi V, Pramod Kumar M (2015) Estimation of multiple density-depth parameters from gravity inversion: application to detached hanging wall systems of strike limited listric fault morphologies. Geofisica Internacional 54:49–65

    Article  Google Scholar 

  • Chakravarthi V, Rajeswara Sastry S, Pramod Kumar M (2014) A method and a GUI based JAVA code for interactive gravity modeling of strike limited listric fault sources with arbitrary density-depth variations. J Geol Soc India 83:577–585

    Article  Google Scholar 

  • Chakravarthi V, Rajeswara Sastry S, Ramamma B (2013) MODTOHAFSD—a GUI based JAVA code for gravity analysis of strike limited sedimentary basins by means of growing bodies with exponential density contrast–depth variation: a space domain approach. Comput Geosci 56:131–141. doi:10.1016/j.cageo.2013.02.005

    Article  Google Scholar 

  • Chakravarthi V (2009) Gravity anomalies of pull-apart basins having finite strike length with depth dependent density: a ridge regression inversion. Near Surface Geophysics 7:217–226. doi:10.3997/1873-0604.2009019

    Article  Google Scholar 

  • Chakravarthi V, Sundararajan N (2007) 3D gravity inversion of basement relief—a depth dependent density approach. Geophysics 72:I23–I32. doi:10.1190/1.2431634

    Article  Google Scholar 

  • Chakravarthi V, Sundararajan N (2004) Ridge regression algorithm for gravity inversion of fault structures with variable density. Geophysics 69:1394–1404. doi:10.1190/1.1836814

    Article  Google Scholar 

  • Chakravarthi V (2003) Digitally implemented method for automatic optimization of gravity fields obtained from three-dimensional density interfaces using depth dependent density. US Patent 6,615,139.

  • Chakravarthi V, Singh SB, Ashok Babu G (2001) INVER2DBASE—a program to compute basement depths of density interfaces above which the density contrast varies with depth. Comput Geosci 27:1127–1133. doi:10.1016/S0098-3004(01)00035-8

    Article  Google Scholar 

  • Chappel A, Kusznir N (2008) An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density-depth relationships. Geophys Prospect 56:249–258. doi:10.1111/ j. 1365-2478.2007.00674.x

    Article  Google Scholar 

  • Christiansen AF (1983) An example of a major syndepositional listric fault. In: Bally AW (ed) Seismic expression of structural styles, American Association of Petroleum Geologists Studies in Geology, vol 15, pp 36–40

    Google Scholar 

  • Constenius KN (1996) Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geol Soc Am Bull 108:20–30

    Article  Google Scholar 

  • Cordell L (1973) Gravity anomalies using an exponential density-depth function—San Jacinto Graben, California. Geophysics 38:684–690. doi:10.1190/1.1440367

    Article  Google Scholar 

  • Essa KS (2013) Gravity interpretation of dipping faults using the variance analysis method. J Geophys Eng 10:015003. doi:10.1088/1742-2132/10/1/015003

    Article  Google Scholar 

  • Geldart LP, Gill DE, Sharma B (1966) Gravity anomalies of two dimensional faults. Geophysics 31:372–397. doi:10.1190/1.1439781

    Article  Google Scholar 

  • Gibbs AD (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. J Struct Geol 5:153–160. doi:10.1016/0191-8141(83)90040-8

    Article  Google Scholar 

  • Goussev et al (2006) Mackenzie Delta: a case of one residual gravity anomaly and 16 dry exploration wells. http://cseg.ca/assets/files/resources/abstracts/2006/178S0131.pdf. Accessed 21 May 2015

  • Gupta OP (1983) A least-squares approach to depth determination from gravity data. Geophysics 48:357–360. doi:10.1190/1.1441473

    Article  Google Scholar 

  • Gupta OP, Pokhriyal SK (1990) New formula for determining the dip angle of a fault from gravity data. SEGTech Program Expanded Abstracts 9646–9.

  • Jackson JA (1987) Active normal faulting and crustal extension. In: Coward MP, Dewey JG, Hancock LP (eds) Continental extensional tectonics, Spec. Publ. Geol. Soc. London, vol 28, pp 3–18

    Google Scholar 

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Wiley-Blackwell, London

    Google Scholar 

  • McGrath PH (1991) Dip and depth extent of density boundaries using horizontal derivatives of upward-continued gravity data. Geophysics 56:1533–1542. doi:10.1190/1.1442964

    Article  Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–31. doi:10.1016/0012-821X(78)90071-7

    Article  Google Scholar 

  • McNeill LC, Piper KA, Goldfinger C, Kulm LD, Yeats RS (1997) Listric normal faulting on the Cascadia continental margin. J Geophys Res 102:123–12,138

    Article  Google Scholar 

  • Melosh HJ (1990) Mechanical basis for low-angle normal faulting in the basin and range province. Nature 343:331. doi:10.1038/343331a0

    Article  Google Scholar 

  • Mohan NL, Anandababu L, Seshagiri Rao SV (1986) Gravity interpretation using the Mellin Transform. Geophysics 51:114–122. doi:10.1190/1.1442024

    Article  Google Scholar 

  • Mohapatra KG, Johnson RA (1998) Localization of listric faults at thrust fault ramps beneath the Great Salt Lake Basin, Utah: evidence from seismic imaging and finite element modeling. J Geophys Res 103:10047–10063. doi:10.1029/98JB00023

    Article  Google Scholar 

  • Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12:591–612. doi:10.1080/00401706.1970.10488699

    Article  Google Scholar 

  • Mishra DC, Gupta SB, Rao MBSV, Venkatarayudu M, Laxman G (1987) Godavari basin—a geophysical study. J Geol Soc India 30:469–476

    Google Scholar 

  • Mooney WD, Kaban MK (2010) The North American upper mantle: density, composition and evolution. J Geophys Res 115:242–448. doi:10.1029/2010JB000866

    Article  Google Scholar 

  • Murthy IVR (1998) Gravity and magnetic interpretation in exploration geophysics. Geological Society of India, India

    Google Scholar 

  • Murthy IVR, Krishnamacharyulu SKG (1990) Automatic inversion of gravity anomalies of faults. Comput Geosci 16:539–548. doi:10.1016/0098-3004(90)90014-K

    Article  Google Scholar 

  • Murthy IVR, Rao DB (1980) Interpretation of gravity anomalies over faults and dykes by Fourier transforms, employing end correction. Geophys Res Bull 18:95–110

    Google Scholar 

  • Nguimbous-Kouoh JJ, Ndougsa-Mbarga T, Njandjock-Nouck P, Eyike A, Campos-Enriquez JO, Manguelle-Dicoum E (2010) The structure of the Goulfey-Tourba sedimentary basin (Chad-Cameroon): a gravity study. Geofisica Internacional 49:181–193

    Google Scholar 

  • Paul MK, Datta S, Banerjee B (1966) Direct interpretation of two dimensional structural fault from gravity data. Geophysics 31:940–948. doi:10.1190/1.1439825

    Article  Google Scholar 

  • Qureshy MN, KrishnaBrahmam N, Garde SC, Mathur BK (1968) Gravity anomalies and the Godavari rift, India. Geological Society of America 79:1221–1230. doi:10.1130/0016-7606

    Article  Google Scholar 

  • Ramakrishna TS, Chayanulu AYSR (1988) A geophysical appraisal of the Purana basins of India. J Geol Soc India 32:48–60

    Google Scholar 

  • Ramanamurthy BV, Parthasarathy EVR (1988) On the evolution of the Godavari Gondwana Graben based on LANDSAT imagery interpretation. J Geol Soc India 32:417–425

    Google Scholar 

  • Rao DB, Prakash MJ, Babu NR (1993) Gravity interpretation using Fourier transforms and simple geometrical models with exponential density contrast. Geophysics 58:1074–1083. doi:10.1190/1.1443491

    Article  Google Scholar 

  • Rao DB (1985) Analysis of gravity anomalies over an inclined fault with quadratic density function. Pure Appl Geophys 123:250–260

    Article  Google Scholar 

  • Rotstein Y, Edel JB, Gabriel G, Boulanger D, Schaming M, Munschy M (2006) Insight into the structure of the Upper Rhine Graben and its basement from a new compilation of Bouguer gravity. Tectonophysics 425:55–70. doi:10.1016/j.tecto.2006.07.002

    Article  Google Scholar 

  • Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Pergamon, USA

    Google Scholar 

  • Singh KT (2013) Gravity and magnetic surveys to delineate favourable zones of uranium mineralization along Khangaon Budrukh-Kabalapur tract, Belgaum district, Karnataka, India. University of Hyderabad, Dissertation

    Google Scholar 

  • Smith RB, Bruhn RL (1984) Intraplate extensional tectonics of the Eastern Basin-Range: inferences on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation. J Geophys Res 89:5733–5762. doi:10.1029/JB089iB07p05733

    Article  Google Scholar 

  • Sundararajan N, Brahmam GR (1998) Spectral analysis of gravity anomalies caused by slab-like structures: a Hartley transform technique. J Appl Geophys 39:53–61. doi:10.1016/S0926-9851(97)00041-4

    Article  Google Scholar 

  • Sundararajan N, Mohan NL, Rao SVS (1983) Gravity interpretation of 2D fault structures using Hilbert transforms. J Geophys 53:34–41

    Google Scholar 

  • Tankard AJ, Welsink HJ (1987) Extensional tectonics and stratigraphy of Hibernia oil field, Grand Banks, Newfoundland. Am Assoc Pet Geol Bull 71:1210–1232

    Google Scholar 

  • Tenzer R, Gladkikh V (2014) Assessment of density variations of marine sediments with ocean and sediment depths. Sci World J 823296

  • Wernicke B, Burchfiel BC (1982) Modes of extensional tectonics. Journal Structural Geology 4:105–115. doi:10.1016/0191-8141(82)90021-9

    Article  Google Scholar 

  • Zhou X (2013) Gravity inversion of 2D bedrock topography for heterogeneous sedimentary basins based on line integral and maximum difference reduction methods. Geophys Prospect 61:220–234. doi:10.1111/j.1365-2478.2011.01046.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank anonymous reviewers, editor, and associate editor for their constructive reviews to improve the quality of the manuscript as presented. BR acknowledges University Grants Commission (UGC), Government of India for extending financial support under PDFWM scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Chakravarthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarthi, V., Pramod Kumar, M., Ramamma, B. et al. Gravity anomaly interpretation of 2D fault morphologies by means of nonplanar fault planes and exponential density contrast model: a space domain technique. Arab J Geosci 10, 64 (2017). https://doi.org/10.1007/s12517-017-2845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2845-z

Keywords

Navigation